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Abstract—As the use of touch surfaces for user interfaces
becomes more common, advances in the interpretations of touch
input have lagged behind and are still limited to only the
most basic of motions. Richer gesture-based human-computer
interactions could serve to advance a wider acceptance of touch-
based technology in a variety of fields. Using a 3D finger posture
rather than just the 2D contact point in gesture definition opens
the door to very rich, expressive, and intuitive gesture metaphors.
In this paper, we present algorithms and methods for estimating
the parameters of 3D finger postures on a touch surface, as well as
a gesture recognition framework which uses an Artificial Neural
Network to recognize 3D gestures on touchpads and touchscreens.

I. INTRODUCTION

Gesture-based interfaces should become more prevalent as
gestures are among the most primary and expressive forms
of human communication. [29]. However, modern models of
gesture interaction on touch surfaces remain relatively rudi-
mentary. Companies like Apple and Microsoft are gradually
introducing gesture metaphors into their products, but they are
still limited to abstract gestures like the “four-finger swipe”
or primitive metaphors such as “pinch to zoom.” Significant
progress could be made in the area of gesture recognition, al-
lowing for the introduction of more complex gesture metaphors
and thus, more complex interaction scenarios. Using a 3D
finger posture rather than just the 2D contact point in gesture
definition opens the door to very rich, expressive, and intuitive
gesture metaphors.

A. Related Work

Virtually all modern touch interfaces consider only the point
of finger contact with the touchpad, limiting themselves to
measuring a pair of coordinates for each finger application.

In [24] the pitch and yaw parameters of finger pose using
probabilistic inference are tracked using capacity proximity
sensors. [25] attempts to distinguish thumb rolls and swipes.

An earlier work by New Renaissance Institute lays a foun-
dation for real-time extraction of 3D posture information from
tactile images [10], [17], [20], [26], [27]. Our work is an
extension and continuation of this work.

B. Finger Posture

In this paper, we consider the interaction scenario of the user
performing finger gestures on a flat, touch-sensitive surface.
Each finger contacting the touch surface has a position and
posture defined in a coordinate system illustrated in Figure 1.

Most existing touch interfaces operate only from finger
position, which represents a point of contact between a finger
and the touch surface in an X-Y plane.

However, this same point of contact could correspond to
different finger postures in three dimensional space. A posture
could be described via Euler angles, commonly denoted by
letters: (φ, θ, ψ) (using Z–X–Z convention). The Euler angles
describing finger posture are shown in Figure 1.

Fig. 1. Finger Posture.

The “neutral posture” is defined as a pose causing the least
discomfort to the user during long term use and which is
also the natural starting point for most common touchpad
actions. Some ergonomic studies [6] recommend a straight
wrist posture and static loading of the arm and shoulder while
avoiding excess finger flexion.

II. FEATURE EXTRACTION

The touch sensor reading is a frame of pixels, each repre-
senting an intensity value (pressure, brightness, or proximity).

Each frame first passes through a “frame pre-processing”
step which includes: normalizing pixel values, accommodating
defective sensels, and thresholding.

The next step is feature extraction: calculating a set of fea-
tures (feature vector) for each frame. Each feature is described
in Section II-B.

A. Image Moments

Discrete Cartesian geometric moments are commonly used
in the analysis of two-dimensional images in computer vision
[4], [3].

The moments definition uses a pixel intensity function.
Two useful kinds are Iraw(x, y), which simply returns the



frame pixel’s value and Ibin(x, y), which uses a step threshold
function and will return zero for pixel values below a specified
threshold and 1 for values above it, effectively producing a
binary image.

The moment of order (p+ q) for a grayscale image of size
M by N with pixel intensities Iraw and Ibin can be defined
respectively as:

M̃p,q =

M∑
x=1

N∑
y=1

xpyqIraw(x, y)

Mp,q =

M∑
x=1

N∑
y=1

xpyqIbin(x, y)

A central moment of order (p + q) for a grayscale image
of size M by N with pixel intensities Iraw and Ibin can be
defined respectively as:

µ̃p,q =

M∑
x=1

N∑
y=1

(x− x̄)p(y − ȳ)qIraw(x, y)

µp,q =

M∑
x=1

N∑
y=1

(x− x̄)p(y − ȳ)qIbin(x, y)

B. Features

In this section we will define a set of useful features which
could be extracted from a frame, obtained from a touch sensor.

1) Area: M0,0 is the number of non-zero pixels in frame.
This is sometimes called the area.

We use the term finger imprint to refer to a subset of frame
pixels having a value exceeding the specified threshold.

2) Average Intensity: This feature represents the average
intensity of non-zero pixels in the frame: ī =

M̃0,0

M0,0

3) Centroids: Interpreting pixel intensity as a surface den-
sity function allows us to calculate the geometric centroid of
a finger imprint.

Using Iraw as an intensity function gives us centroids:

¯̃x =
M̃10

M00
; ¯̃y =

M̃01

M00

Using Ibin as an intensity function gives us centroids:

x̄ =
M10

M00
; ȳ =

M01

M00

Centroids can be used to estimate finger position.
4) Normalized Eigenvalues of the Covariance Matrix: A

covariance matrix of Ibin(x, y) is:[
µ2,0 µ1,1

µ1,1 µ0,2

]
(1)

The first and second eigenvalues λ1 and λ2 of the matrix
in equation (1) are proportional to the squared length of the
axes of finger imprint [5]. From these, we can define e1 and
e2 as two features representing scale-invariant normalizations
of λ1 and λ2:

e1 =
λ1
µ0,0

; e2 =
λ2
µ0,0

5) Euler’s φ Angle: A finger imprint typically has the shape
of a (typically oblong) blob. The asymmetry of this blob could
be used to estimate Euler’s φ angle.

The eigenvectors of the matrix in equation (1) correspond
to the major and minor axes of the finger imprint. φ can be
calculated as an angle of the major axis, represented by the
eigenvector associated with the largest eigenvalue [4]:

φ =
1

2
tan−1(

2µ1,1

µ2,0 − µ0,2
) (2)

An alternative formula to calculate φ is:

φ =
1

2
cot−1(

µ2,0 − µ0,2

2µ1,1
) (3)

We can use one of the above equations (2), (3), depending
on which of µ1,1 or µ2,0−µ0,2 is zero, to avoid an undefined
value caused by division by zero [13].

Due to anatomic limitations and ergonomic considerations,
most user interactions on touch surfaces fall within a certain
range of φ angles, somewhat centered around a value of φ
corresponding to a neutral posture. Since equation (2) could
never evaluate to ±π2 and equation (3) could never evaluate to
−π2 , it is convenient to choose a coordinate system in which
the φ angle corresponding to a neutral posture does not fall
close to nπ + π

2 , n ∈ Z to minimize the likelihood of their
occurrence. For example, a coordinate system in which φ value
for neutral posture equals 0 is a good choice.

In real-time systems, instead of equation (3) a high-
performance, closed-form, single scan algorithm [13] could be
used.

6) Euler’s ψ Angle: Finger posture changes which cause
variation of Euler’s ψ angle could be informally described as
“rolling” a finger on the surface.

While the finger is in a neutral posture, the left and
right edges of its imprint shape typically have roughly equal
curvature. As the finger rolls away from the neutral position,
the leading edge is usually “flatter” compared to the trailing
edge. As ψ increases, the shape changes accordingly: the
leading edge becomes flatter while the trailing edge becomes
more pronouncedly curved.

These changes in curvature permit the value of Euler’s ψ
angle to be estimated based on the difference between edge
curvatures using the following steps:

The first step is to detect the left and right imprint edges.
This could be done using zero-crossing on per-row intensity
values.

The second step is to fit a polynomial curve to the sets of
points constituting the left and right edges. The row number is
interpreted as abscissa and the column number as an ordinate.
The shape of the edges is approximated with a second degree
polynomial, as shown in Figure 2.

If for a given edge the variable r denotes row number and
the variable c column number, the equation describing the edge
would be:



Fig. 2. Parabolas Fitting the Left and Right Edges.

c = a0 + a1r + a2r
2 (4)

The polynomial coefficients could be estimated using least
squares:

a = (XtX)−1XT y (5)

The signed curvature of a parabola specified by equation (4)
is:

k =
c′′

(1 + c′2)
3
2

Taking derivatives gives us:

k =
2a2

(1 + (a1 + 2a2r)2)
3
2

(6)

A parabola curvature is greatest at the vertex which is
located at:

rv = − a1
2a2

(7)

Thus a signed curvature at vertex point could be calculated
by substituting r in equation (6) with rv from equation (7):

kv = 2a2 (8)

which is also a second derivative c′′ from equation (4). As
such, it will have opposite signs for parabolas fitting the left
and right edges, as one of parabolas will typically concave left
while the other will typically concave right.

The sum of the two kv terms will change magnitudes and
signs in a way that monotonically tracks the changing ψ angle
that is defined to be zero when parabolas are similar, negative
in one direction, and positive in the opposite direction:

ψ ∝ (leftkv + rightkv )

where leftkv and rightkv are curvature values at vertex
point for parabolas fit to the left and right edges of a finger
imprint. Substituting kv using equation (8) gives the even
simpler formula:

ψ ∝ (lefta2 + righta2)

where lefta2 and righta2 are a2 coefficients from equa-
tion (4) for parabolas fit to left and right edges of a finger

imprint found using equation (5).
7) Euler’s θ Angle: θ could be estimated using the follow-

ing shape-based algorithm. Row and column scans are used to
find the top, bottom, left, and right edges of a finger imprint.
This produces vectors of x coordinates for the left and right
edges: Xl and Xr respectively and similarly y coordinates for
the top and bottom edges: Yt and Yb respectively. Taking
arithmetic mean values of these vectors will give us respective
coordinates for the sides of a box roughly approximating the
shape of the finger imprint.

An empirical formula shown to provide a good estimate of
θ is:

θ ∝ 1

M0,0

√
(Xr −Xl)2 + (Yt −Yb)2

Geometrically, this can be described as the length of a
diagonal of a rectangle approximating the finger’s imprint nor-
malized by the value of the area feature. Note this incorporates
several essential details: linear approximation of the edges,
usage of a diagonal length, and normalization by M0,0 rather
than width× height.

Our experiments show that this formula correlates well with
finger application angle θ and could be used as an empirical
estimator of such. It is also scale-invariant which is important
due to anatomical size variations of fingers.

C. φ Correction
The shape-based algorithms for calculating ψ and θ de-

scribed in Sections II-B6 and II-B7 are sensitive to Euler’s
angle φ of the finger’s application due to the use of row and
column scanning to find the left, right, top, and bottom finger
edges. During these operations, rows and columns are defined
in a coordinate system in which a projection of the major axis
of a finger’s distal phalanx to the X-Y plane is parallel to the
Y axis. The actual finger imprint could be rotated in the X-Y
plane by an arbitrary φ angle.

To use the algorithms discussed in Sections II-B6 and II-B7,
the φ angle is calculated first and then used to perform φ
correction before calculating ψ and θ. Equation (9) shows the
correction operation – a transformation of vector F containing
coordinates of a frame’s pixels to Fφ by using a rotation
matrix, effectively rotating them by angle φ about the origin
of the coordinate system.

Fφ =

[
cosφ −sinφ
sinφ cosφ

]
F (9)

Figure 3 demonstrates the results of φ correction.
The effect of φ correction on left and right edge detection is

shown in Figure 4. The dashed lines show curves approximat-
ing uncorrected left end right edges, while the solid lines show
curves calculated after φ correction. Without φ correction,
incorrect ψ and θ values will be calculated using shape-based
approaches described in Sections II-B6 and II-B7.

D. Signal Processing
A temporal sequence of feature vectors could be viewed

as a set of pseudo-continuous signals. Some of these signals



Fig. 3. φ correction.

Fig. 4. Effects of φ correction on left and right edge detection.

could be used as control inputs to control software or hardware
(see Section IV) by varying finger posture and position.

Some signals could benefit from applying filters as de-
scribed below.

When a human finger touches the sensor surface, it deforms.
Some signals, such as Euler’s angles cannot be reliably calcu-
lated during this initial deformation. This could be addressed
by using a dampening filter. This filter ignores frames for
time td following initial finger contact with the sensor surface.
To avoid filter activation due to noisy sensor readings, it is
activated only if a finger touch is detected after an absence for
a given period of time tn.

Figure 5 illustrates the dampening filter operation. M0,0 is
used to detect whether a finger is touching the surface. In the
depicted example, the finger is removed from the surface at
t0 and re-applied at t1. Since the duration of finger absence
(t1 − t0) ≥ tn the dampening filter is activated, suppressing
output of unreliable calculations of φ, ψ, and θ signals for td,
until t2. The dashed line shows suppressed signals values.

A signal’s random noise could be attenuated by using a
low-pass filter. A causal filter approach is used to estimate the
value of a signal at a given point in time using LOWESS [2]
applied to ws prior values. These values are called smoothing
window. Such a filter is used for smoothing Euler’s angles.

III. GESTURE RECOGNITION

A temporal sequence of feature vectors could be used to
recognize a set of predefined gestures performed by changing
finger posture and position. The gesture recognition module

Fig. 5. Effects of application of a dampening filter.

processes a stream of feature vectors and attempts to recognize
a gesture presence and boundaries.

A user can perform a variety of gestures, the most basic
involving variation of only a single parameter of finger posture
or position. The initial set of basic gestures could be:

Sway User changes x coordinate of finger position (swiping
the finger left to right or right to left).

Surge User changes y coordinate of finger position (swiping
the finger towards or away from the body).

Heave User changes ī (varying the pressure, applied by the
finger to the touchpad).

Yaw User changes φ, varying corresponding angle.
Roll User changes ψ, varying corresponding angle.
Pitch User changes θ signal, varying corresponding angle.
A gesture recognition problem could be formulated as a

sequence labelling [21] problem. Representing each gesture
as having two directional (left and right) labels produces the
following initial set of gesture labels:

Σ0 = {yawl, yawr, rolll, rollr, pitchl, pitchr} (10)

To represent a situation where no gesture is present, an
additional null label, denoted by symbol �, is introduced
producing the final set of labels: Σ = {Σ0,�}.

Each frame (at time t) could be represented by a feature
vector, for example:

st = (M0,0, ī, x̄, ȳ, ¯̃x, ¯̃y, e1, e2, φ, θ, ψ) (11)

A sliding window approach to real-time sequence la-
belling is used, where the classification of a sample at
time t is made based on wd current and previous samples
(st, st−1, ..., st−(wd−1)). The value wd is called gesture recog-
nition window size. This window size is selected experimen-
tally, based on several factors such as sampling rate and
average gesture duration.

The input of the classifier at time t is the concatenation of
wd most recent feature vectors:



xt = (st, st−1, ..., st−(wd−1)) (12)

The output of the classifier is a label from the set Σ.

A. Artificial Neural Network Classifier

To assign labels to each feature vector, we used an ANN
classifier.

The classifier will have |xt| inputs and |Σ0| outputs. The
input of the classifier is vector xt (see equation (12)). The
output could be interpreted as a vector of probabilities for each
label from set Σ0 (see equation (10)).

Based on this vector of label probabilities, a single label is
selected by applying accept and reject thresholds: the label is
chosen if its probability is above the acceptance threshold, and
all other label probabilities are below the rejection threshold.
This classification approach is sometimes called “one-of-n with
confidence thresholds” [28]. If no label passes the threshold
test, the null label (�) is assigned.

A simple feedforward ANN with two hidden layers using
the tanh activation function was used. The ANN output layer
uses the logistic activation function, so as to produce outputs
in [0, 1] interval, convenient for probabilistic interpretation.

Under certain conditions, some features cannot be calcu-
lated. In this case, we store a special NULL symbol, indicating
a missing value. Since an ANN could not handle NULL values,
they have to be handled outside of the ANN. There are two
cases of missing values: 1) If within a given window a feature
is NULL for all frames, do not send these windows to the ANN
classifier, assume that no gesture is present, and assign a null
label, and 2) if within a given window for a feature some
values are NULL, try to interpolate those missing values by
replacing them with the mean value for the respective feature
across the window.

B. Principal Component Analysis

Increasing ANN inputs above a certain number can cause
a degradation of the performance of the ANN classifier with a
noticeable impact on training time and required CPU resources,
because the number of ANN cells and required amount of
training data grows exponentially along with dimensionality
of the input space [1].

To address this problem the number of features used can
be limited. However, it is difficult to predict a priori the
usefulness of different features in classification decisions. One
can employ a dimensionality reduction technique such as a
Principal Component Analysis (PCA). A PCA operation is
applied to an extended feature vector including more moments
in addition to those features defined in st:

spca = st ∪ (M0,1,M1,0, M̃0,0, M̃0,1, M̃1,0,

µ̃1,1, µ̃2,0, µ̃0,2, µ̃2,1, µ̃1,2, µ̃2,2)

Each feature in the feature vector is mean centered and
scaled to have unit variance. The PCA operation, applied to
spca, produces a list of principal components corresponding to

dimensions in a new space. Low-variance components could
then be dropped.

Assuming that the original data has N intrinsic degrees
of freedom, represented by M features with M > N , and
some of the original features are linear combinations of others,
the PCA will allow us to decrease the number of dimensions
by orthogonally projecting original data points to a new,
lower-dimension space while minimizing the error caused by
dimensionality decrease. One limitation of this technique is
that it could not detect non-linear correlations within data.

The PCA parameters are calculated offline, based on a sam-
ple dataset of feature vectors calculated from a representative
sequence of pre-recorded frames. The parameters consist of
a vector of scaling factors ps, a vector of offsets po, and
transformation matrix Pt.

During ANN training and ANN-based gesture recognition,
these three parameters are used to convert the feature vector
spca into a vector of principal components: ct ⊂ ((spca −
po)ps)Pt. An ANN classifier is then used as described in
Section III-A, but instead of xt, a vector rt is used as input:
rt = (ct, ct−1, ..., ct−(wd−1)).

C. Gesture Recognition Module Architecture

An architecture of a gesture recognition module is shown
in Figure 6. 1 is the input of the module, a vector of features
spca. A PCA transformation is applied to this vector resulting
in ct, marked as 2 . The last wd values of ct are accumulated
in a recognition window. The contents of this window are then
concatenated into a single vector, rt 6 , which is submitted
as input to the ANN. The output of the ANN, 8 , is a vector
of label probabilities.This vector is interpreted by the label
assigning module, which assigns a label, 9 , to the current
frame. This label is one of the outputs of the recognition
module.

Parallel to the “label” data flow depicted in the upper
portion of Figure 6, the same features 1 can also be used
to obtain smoothed signals representing finger position and
posture. A subset st of values from input vector spca 1 is split
into two vectors: spatial coordinates of the centroid 4 and
remaining features from st. The centroid is processed by the
Kalman filter resulting in 5 – a vector of smoothed centroid
coordinates. Other features are smoothed using LOWESS
based on ws last feature vectors, accumulated in the smoothing
window. These smoothed signals are re-concatenated with 5
to produce a vector 7 which contains a smoothed version
of st. This vector, marked as 10 , is also an output of this
module.

IV. EXPERIMENTAL RESULTS

For ANN Classifier training, we recorded a relatively small
(370,108 frames) dataset of various gestures performed by
users on a touchpad and manually labeled each frame with the
gesture used. Using repeated random sub-sampling validation,
the dataset was split into K folds combined in different ways
into training, validation, and testing subsets for training and
measuring performance of our gesture classifier.



Fig. 6. Gesture Recognition.

The performance of our ANN classifier was sufficient for
gesture recognition in real-time on a regular consumer-level
PC at a input frame rate of 100 FPS.

To tune classifier parameters, we evaluated results with such
metrics as precision and recall (micro and macro averaged) and
were able to achieve gesture recognition with a miss rate below
1 percent.

To demonstrate applications for 3D gestures, we imple-
mented gesture control for a variety of applications: Microsoft
Excel, Google Earth, Wolfram Mathematica, and the OWI
robotic arm. These and a large number of other applications
have been explored by NRI [7]–[12], [14]–[16], [18], [19].

Videos [22], [23] have been published online showing
working examples of this system.
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