
Distributed Builds with Rendezvous and DistCC

Vadim Zaliva, lord@crocodile.org

June 3, 2004

Contents

1 Distributed compilation 1

2 Automating build farm machines discovery using Rendezvous 2

3 Setting up compilation farm servers 2

4 Setting up compilation farm clients 4

5 Setting up your compiler 5

6 Conclusions and Further Work 6

A Client Scripts Source Code 6
A.1 distcc on . 6
A.2 distcc off . 7
A.3 distcc status . 7
A.4 distcc nhosts . 7
A.5 distcc wrapper . 7

B mDNSlookup Source Code 8

1 Distributed compilation

If you are working on a sizable C, C++ or Objective C project and compilation
time becomes an issue, you may want to consider organizing a compile farm and
running a distributed compile on several machines simultaneously. There is an
excellent product named DistCC which allows you to do this.

The idea is that you install the distcc daemon on multiple machines which
will become your “compile farm”. When you compile from your client machine,
it distributes the work (per source file) to multiple machines in your farm.

DistCC works as a wrapper around the compiler. It passes source files
through the preprocessor (thus eliminating all local dependencies) and sends
the resulting pre-processed source to one of the build farm machines over the

1

http://distcc.samba.org

network using TCP protocol. The build machine compiles the received files
and sends resulting object files back to the client. Since the files are already
pre-processed, the build farm compiler does not need to have any header files
or know any macro definitions which you might need to compile the original
source. This way, you do not need to install libraries and header files of 2rd
party libraries on each of the compile farm machines - you only need them on
your client machine.

All linking is done on the client machine. To parallelize the build process, it
is recommended that you use the GNU make “-j” option. When it is specified,
GNU make tries to compile several files in parallel (if there are no dependencies
among them). With DistCC they would end up being sent to different compile
farm machines and compiled in parallel.

2 Automating build farm machines discovery us-
ing Rendezvous

The main problem with simple DistCC deployment is that you need to know
the names of all the machines in the compile farm. Usually you need to list
them in the DISTCC HOSTS environment variable. If some hosts become un-
available, or new hosts are added, you need to know and must update your local
configuration accordingly. In a larger organization, this quickly becomes a time
consuming issue.

In their latest development tools release, Apple also makes use of a dis-
tributed build feature. They populate the list of machines in a compile farm
automatically by using Rendezvous technology. Interestingly, they are using
DistCC as well as actual build distribution technology.

In this article we will show how you can implement something similar in
Linux, giving you all the benefits of a distributed build farm with automatic
discovery while using inexpensive hardware and free software. We will describe
the setup for this using Red Hat Linux 9, but with minimal changes it could be
used with other Linux and Unix platforms as well.

3 Setting up compilation farm servers

First we need to Rendezvous-enable your Linux boxes. There are several imple-
mentations of Rendezvous for Linux, even one from Apple. Rendezvous is in fact
Apple’s name for Zeroconf technology. We have chosen an open source cross-
platform implementation of Zeroconf for Linux called “HOWL” from Porchdog
Software.

First, download and install HOWL from Porchdog Software’s web site. We
used the RPM package they provide.

HOWL distribution includes several daemons, but only one, namely “mDNSResponder”
(dynamic publication and service discovery daemon) is of interest to us.

2

http://www.apple.com/macosx/features/xcode/
http://www.apple.com/macosx/features/rendezvous/
http://www.zeroconf.org/
http://www.porchdogsoft.com/products/howl
http://www.porchdogsoft.com/products/howl/download.html
http://www.porchdogsoft.com/download/howl-0.9.5-1.i386.rpm

After it has been installed, you need to make sure it will start automatically
on boot:

chkconfig --add mDNSResponder

chkconfig --level=345 mDNSResponder on

howl-0.9.5-1.i386.rpm has a small mistake in the file “/etc/init.d/mDNSResponder”.
It specifies the wrong path to “mDNSResponder binary”. Also, it does not spec-
ify the configuration file’s location. After installation, apply this small patch to
“/etc/init.d/mDNSResponder” to correct these problems:

--- mDNSResponder.old 2004-06-02 17:16:03.000000000 -0700

+++ /etc/init.d/mDNSResponder 2004-06-02 17:45:47.000000000 -0700@@ -12,7 +12,7 @@

processname: mDNSResponder

config:

-OTHER_MDNSRD_OPTS=""

+OTHER_MDNSRD_OPTS="-f /etc/mDNSResponder.conf"

Source function library.

. /etc/init.d/functions

@@ -24,7 +24,7 @@

start() {

echo -n $"Starting mDNSResponder... "

- /usr/local/bin/mDNSResponder $OTHER_MDNSRD_OPTS

+ /usr/bin/mDNSResponder $OTHER_MDNSRD_OPTS

RETVAL=$?

echo return $RETVAL

Now you need to create a configuration file with a list of the services on this
machine, which you want to advertise via Rendezvous. For example “/etc/mDNSResponder.conf/”
may look like this:

mDNSResponder conf file

#

name type domain port text record

rover _ssh._tcp local. 22

rover _distcc-RH9._tcp local. 3632

This will advertise SSH and DISTCC services on this machine. In the ex-
ample above, ’rover’ is a local machine name. Replace it with the actual name
of your host. Since all machines in a DistCC compile farm must have the same
architecture and name for the compiler, we called our service “ distcc–RH9” to
show that this is Red Hat 9 i386 machine. You may run several farms in the
same organization by using different names, for example “ distcc–Solaris8” or
“ distcc–FreeBSD5”.

Now you can start “mDNSResponder” with the following command:

service mDNSResponder start

3

If you have a MacOS X machine on the local network you can test how this
works by using a Terminal application. Go to “File–Connect To Server” menu
and you should see the name of your Linux machine in the list of SSH hosts
there. For example:

Figure 1: “Connect To Server” dialogue of MacOS X Terminal program

Now you need to install distcc-server. (We used RPMs for Red Hat Linux
9)

Make sure it will start on boot:

chkconfig --add distcc

chkconfig --level=345 distcc on

And start it:

service distcc start

Repeat these steps for all compilation farm machines.

4 Setting up compilation farm clients

To use Rendezvous on clients, you will also need to install and run the “mDNSResponder daemon”.
Follow the steps from the previous section to install it. However this time you
should not include the configuration line for distcc in “mDNSResponder.conf”
unless your client machine also acts as a compilation server.

4

ftp://ftp.axian.com/pub/people/terryg/distcc/RH9-RPMS/
ftp://ftp.axian.com/pub/people/terryg/distcc/RH9-RPMS/

Next we need to compile a small program which we will use to look up distcc
servers using Rendezvous. To compile it you need to install HOWL development
libraries and headers on one of the machines. (You can do this on one machine
and copy the resulting binary to all others). We used howl-devel RPM package
to install HOWL libraries.

The source code of “mDNSlookup.c” could be found in Appendix B on
page 8. Compile it with the following command:

cc -I/usr/include/howl mDNSlookup.c -o mDNSlookup -lhowl -lpthread -lrt

And install in your executable path (for example to “/usr/local/bin/”).
Now, finally we can test to see what machines we can discover:

[root@rover root]# mDNSlookup _ssh._tcp 500

rover _distcc-RH9._tcp. local. 192.0.2.140 3632

zembla _distcc-RH9._tcp. local. 192.0.2.139 3632

In the example above, it found 2 machines: “zembla” and “rover” with IP
addresses 192.0.2.139 and 192.0.2.140, respectively. Both machines are offering
compilation services using DistCC on Red Hat 9, listening on TCP port 3632.

5 Setting up your compiler

Now we just have one last step left: to make use of discovered hosts. There are
several ways to do this. We have chosen the compiler shell wrapper approach.
The main advantages of this approach are:

• On multi-user systems users can control individually when DistCC should
be used.

• There is no need to modify project Makefiles to take advantage of dis-
tributed builds.

• Users can easily switch distributed builds off and on (some tools, for ex-
ample “imake”, do not work well when DistCC use is enabled).

You need to install some scripts listed in Appendix A on page 6 in some direc-
tory which is in the binary executable path of all users (e.g. “/usr/local/bin/”):

You may want to tweak the last two scripts a bit (“distcc nhosts” and
“distcc wrapper”), adjusting the variables at the beginning. The variable MDNS TIMEOUT
defines how long to wait for Rendezvous responses (in milliseconds). ADD HOSTS BEFORE
and ADD HOSTS AFTER allow you to add some non-Rendezvous-enabled
compile farm hosts to list hosts which will be used. The value of SERVICE NAME
should match the one you set earlier in “/etc/mDNSResponder.conf” on the
compile farm hosts. To verify that it works you may temporary uncomment the
line, setting the DISTCC VERBOSE variable. This would produce compilation-
time debug output from distcc showing what hosts are used.

5

http://www.porchdogsoft.com/download/howl-devel-0.9.5-1.i386.rpm

There is another product which could be used together with distcc to speed
up compilation even further: CCACHE. It works pretty well together with
DistCC and provides a noticeable compilation speed up, even when using a
compilation farm. If you have it installed (you need to install it just on the
client machine), replace the following line in “distcc wrapper”:

exec distcc /usr/bin/c++ $*

with

exec ccache distcc /usr/bin/c++ $*

Now you are all set. To start your first distributed compile, just type:

make -j ‘distcc_nhosts‘

6 Conclusions and Further Work

We have shown how to build an inexpensive and robust solution for distribute
Linux builds across multiple machines. Once set up, no changes need to be made
on the client side when new machines are added to or removed from a farm.
If some machine becomes temporary unavailable (for instance due to network
connectivity issues), this will be immediately discovered and clients will make
no attempt to use it.

If a number of machines in the compile farm as well as a number of client
machines are noticeable, it might make sense to prepare RPM packages for
both the client and sever which will eliminate any manual configuration, except
RPM installation. “mDNSResponder.conf” could be generated automatically
by the RPM post-install script (with the name of the machine taken from the
“hostname” command and the service name build from the machine architecture
name and gcc version).

A minor limitation of the current approach is that DistCC service is adver-
tised whenever a machine is up, regardless of whether the DistCC daemon is
running or not. This could be corrected fairly simply by a small modification
of distcc daemon to register on “mDNSResponder” on startup and unregis-
ter on exit. HOWL provides an example of such code in the source code of
“mDSNPublish” example.

A Client Scripts Source Code

A.1 distcc on

#!/bin/sh

Enables distributed compilation using DistCC

ln -s /usr/local/bin/distcc_wrapper ~/bin/c++

ln -s /usr/local/bin/distcc_wrapper ~/bin/cc

ln -s /usr/local/bin/distcc_wrapper ~/bin/g++

ln -s /usr/local/bin/distcc_wrapper ~/bin/gcc

6

http://ccache.samba.org/

A.2 distcc off

#!/bin/sh

Disables distributed compilation using DistCC

rm -f ~/bin/c++ ~/bin/cc ~/bin/g++ ~/bin/gcc

A.3 distcc status

#!/bin/sh

Shows if distributed compilation using DistCC is enabled

if [-f ~/bin/c++] ; then

echo "distcc is ON"

else

echo "discc is OFF"

fi

A.4 distcc nhosts

#!/bin/sh

Prints number of hosts availiabe in compile farm

Output of this script intended to be used with -j option

of GNU make.

#

By default we return number twice as much as hosts found in compile

farm, plus one (to handle empty compile farm).

MDNS_TIMEOUT=200

SERVICE_NAME=_distcc-RH9._tcp

ADD_NHOSTS=1

MULTIPLY_NHOSTS=2

echo $(($ADD_NHOSTS+$((‘mDNSlookup "$SERVICE_NAME" $MDNS_TIMEOUT | wc -l‘+$MULTIPLY_NHOSTS))))

A.5 distcc wrapper

#!/bin/sh

#

DistCC wrapper to use Rendezvous to discover compile

farm machines. Should not be run directly by user.

MDNS_TIMEOUT=200

ADD_HOSTS_BEFORE=

ADD_HOSTS_AFTER=

SERVICE_NAME=_distcc-RH9._tcp

DYNAMIC_HOSTS=‘mDNSlookup "$SERVICE_NAME" $MDNS_TIMEOUT | awk ’{printf "%s:%s ",$4,$5;}’‘

export DISTCC_HOSTS="$ADD_HOSTS_BEFORE $DYNAMIC_HOSTS $ADD_HOSTS_AFTER"

export DISTCC_NHOSTS=‘echo "$DISTCC_HOSTS" | wc -w‘

echo $DISTCC_HOSTS

7

#export DISTCC_VERBOSE=1

exec distcc /usr/bin/c++ $*

B mDNSlookup Source Code
/*
* Copyright 2003, 2004, 2004 Porchdog Software. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above
* copyright notice, this list of conditions and the following
* disclaimer.
*
* 2. Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials
* provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY PORCHDOG SOFTWARE ‘‘AS IS’’ AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE HOWL PROJECT OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
* USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
* The views and conclusions contained in the software and
* documentation are those of the authors and should not be
* interpreted as representing official policies, either expressed or
* implied, of Porchdog Software.
*
* ---
*
* mDNSlookup is quick hack, based on mDNSBrowse example from HOWL package.
*
* Main changes:
* 1. introduced timeout parameter
* 2. less-verbose output (do not report some packets, do not print TXT records)
*
* To compile on Linux use following command:
*
* cc -I/usr/include/howl mDNSlookup.c -o mDNSlookup -lhowl -lpthread -lrt
*
* Vadim Zaliva
*
*/

#include <howl.h>

#include <stdio.h>
#include <time.h>

static sw_result HOWL_API lookup_resolver(
sw_discovery_resolve_handler handler,
sw_discovery discovery,
sw_discovery_resolve_id id,
sw_const_string name,

8

sw_const_string type,
sw_const_string domain,
sw_ipv4_address address,
sw_port port,
sw_const_string text_record_string,
sw_octets text_record,
sw_ulong text_record_len,
sw_opaque extra)

{
char name_buf[16];

sw_discovery_stop_resolve(discovery, id);
printf("%s %s %s %s %d\n", name, type, domain,

sw_ipv4_address_name(address, name_buf, 16), port
);
return SW_OKAY;

}

static sw_result HOWL_API lookup_browser(
sw_discovery_browse_handler handler,
sw_discovery discovery,
sw_discovery_browse_id id,
sw_discovery_browse_status status,
sw_const_string name,
sw_const_string type,
sw_const_string domain,
sw_opaque extra)

{
sw_discovery_resolve_id rid;

if(status==SW_DISCOVERY_BROWSE_ADD_SERVICE)
{

if(sw_discovery_resolve(discovery, name,
type, domain,
NULL, lookup_resolver,
NULL, &rid) != SW_OKAY)

{
fprintf(stderr, "resolve failed\n");
return -1;

}
}
return SW_OKAY;

}

main(int argc, char **argv)
{

sw_discovery discovery ;
sw_result result ;
sw_discovery_browse_id id ;
sw_salt salt ;
sw_ulong timeout ;

if(argc == 3)
{

char *e;
timeout=strtol(argv[2], &e, 10);
if(*e)
{

fprintf(stderr, "Invalid timeout value. Should be number in milliseconds!\n");
fprintf(stderr, "Usage: mDNSlookup <type> [timeout]\n");
return -1;

}
} else if(argc != 2)
{

fprintf(stderr, "Usage: mDNSlookup <type> [timeout]\n");
return -1;

9

} else
timeout = 0L;

if((result = sw_discovery_init(&discovery)) != SW_OKAY)
{

fprintf(stderr, "sw_discovery_init failed: %d\n", result);
return -1;

}

if(sw_discovery_browse(discovery, argv[1], NULL,
NULL, lookup_browser, NULL, &id) != SW_OKAY)

{
fprintf(stderr, "sw_discovery_browse_services failed: %d\n", result);
return -1;

}

if(sw_discovery_salt(discovery, &salt)!= SW_OKAY)
{

fprintf(stderr, "sw_discovery_salt failed: %d\n", result);
return -1;

}

if(timeout == 0L)
{

/* No timeout - wait forever. */
sw_discovery_run(discovery);

} else
{

/*
Correct code should be:

while(timeout != 0L)
sw_salt_step(salt, &timeout);

but sw_salt_step() does not modify
timeout value (this bug was reported
to authors).

*/

/*
So, we have to do a workaround, using
POSIX 1003.1b Section 14 (Clocks and Timers) API:

*/

struct timespec start;
clock_gettime(CLOCK_REALTIME, &start);
while(1)
{

struct timespec now;
clock_gettime(CLOCK_REALTIME, &now);

long waited = (1000L*now.tv_sec+now.tv_nsec/1000000L) -
(1000L*start.tv_sec+start.tv_nsec/1000000L);

if(waited>=timeout)
break;

sw_ulong remain=timeout-waited;
sw_salt_step(salt, &remain);

}
}
return 0;

}

10

	Distributed compilation
	Automating build farm machines discovery using Rendezvous
	Setting up compilation farm servers
	Setting up compilation farm clients
	Setting up your compiler
	Conclusions and Further Work
	Client Scripts Source Code
	distcc_on
	distcc_off
	distcc_status
	distcc_nhosts
	distcc_wrapper

	mDNSlookup Source Code

