
Platform-Independent Firewall Policy

Representation

Vadim Zaliva, lord@crocodile.org

December 2, 2007

Abstract

In this paper we will discuss the design of abstract firewall model along

with platform-independent policy definition language. We will also discuss

the main design challenges and solutions to these challenges, as well as

examine several differences in policy semantics between vendors and how

it could be mapped to our platform-independent language. We will also

touch upon a processing model, describing the mechanism by which an

abstract policy could be compiled into a concrete firewall policy syntax.

We will discuss briefly some future research directions, such as policy

optimization and validation. Keywords: firewall, policy, NAT, fwbuilder,

security, rules

1

Contents

1 Introduction 3

2 Abstract Firewall 4

2.1 Data Model . 4

2.1.1 Basic Networking Objects 4

2.1.2 Hosts, Firewalls, Policies 5

2.1.3 Utility Objects . 5

2.2 Syntax . 6

2.3 Processing Model . 8

2.4 Policy Verification and Optimization 10

2.4.1 Verification . 10

2.4.2 Optimization . 10

3 Platform-specific challenges 11

3.1 Implicit vs. Explicit Interface Specification 11

3.2 Default Policy . 11

3.3 First vs. Last Policy Rule Matching 11

3.4 NAT vs Firewall Rules Order . 11

3.5 Negation . 12

3.6 Addrress Range Emulation . 12

3.7 Dymanic Interfaces . 13

4 Abstract Policy Compilation Techniques 13

5 Related Work 14

6 Conclusions 14

Appendices 16

A Firewall Builder DTD 16

2

1 Introduction

Presently, firewall administrators are often required to manage multiple firewall
platforms from different vendors. Each of these platforms has its own language
to describe firewall policies. Besides syntax differences, firewall policy models
also vary from vendor to vendor. If we make a parallel to programming lan-
guages, a firewall administrator is required to learn multiple assembly languages.
One possible solution is the introduction of a high-level, platform-independent
firewall policy description language which could be compiled into representa-
tions specific to particular platforms. This approach relieves the burden on
firewall administrator of learning the low-level details of multiple firewall plat-
forms. Additionally, it helps to eliminate large groups of trivial errors which
a human could make during policy configuration, by allowing a user to work
with higher level abstractions without being burdened by low-level policy syn-
tax details. Having a platform-independent policy representation will also allow
the user to develop a class of cross-platform tools for managing, analyzing, and
validating such policies. We believe that our approach will allow administrators
to increase system security by reducing the chance of human error.

The ideas described in this paper are implemented in a successful open
source project called Firewall Builder[10]. It currently supports five firewall
platforms and is included in major Linux distributions. Firewall Builder al-
lows the user to create and edit policies of an abstract firewall expressed in a
platform-independent language. The project provides convenient GUI for edit-
ing firewall policies. The abstract policy uses a set of provided policy compilers

to compile into policy files for concrete firewall platforms. In this paper we have
focused on abstract firewall models and policy compilation. We refer readers to
related documents on Firewall Builder user interface[11], API, extensibility[14],
etc.

This paper is organized as follows: In section 2 we wil describe the Abstract
Firewall model we are using. In section 3 we will discuss some examples of
platofrm-specific differences to illustrate the kinds of problems we are solving.
Then, in section 4, we will discuss some processing techniques we have used.
Finally, in section 6 we will cover some of the possible directions of future
research.

3

2 Abstract Firewall

Firewall Builder presents a user with a Synthetic Model of a firewall, in which
we can combine features supported by various firewall platforms. We also made
some assumtions about the semantics of some rules, which are normally also
platform dependent.

When working with Firewall Builder, the user only needs to know this ab-
stract firewall model. The user defines policy for this imagninary abstract fire-
wall, and Firewall Builder’s policy compiler translates it to the model of the
concrete firewall where it will be actually deployed.

2.1 Data Model

We use an object model to represent various networking and security concepts
used in configuring firewalls. User data is saved in files with .fwb using syntax
described in section 2.2. Objects are organized into Libraries. Each file is a col-
lection of such libraries. Typically there is at least one library of objects created
by the user. Additionally, there is a library of standard objects provided with
Firewall Builder which includes definitions of standard objects (such as a list of
standard address ranges for private networks per RFC 1918[12]). When used in
a business environent, the company may supply some libraries of company-wide
objects to be used by all departements.

The objects could be rougly split into several categories:

2.1.1 Basic Networking Objects

This category includes some basic objects representing common concepts used
in Networking. Some of them are:

IPv4 Address Internet Protocol (IP) version 4 address

IP Service IP service, defined by protocol number and some options like loose

source rote and record route

UDP Service UDP service is defined by source and destination port ranges.

TCP Service TCP service is defined by source and destination port ranges
and some flags.

ICMP Service ICMP service is defined by ICMP type and ICMP code

4

Physical Address Data link layer address, such as Ethhernet MAC address

or Frame Relay Data Link Connection Identifier (DLCI).

Time Interval Allows specify time period. Time intervals are commonly used
to specify time-based firewall policies. It could be expressed either in
terms of absolute date and time specifications, or in terms of week days
(e.g. from Monday to Friday)

2.1.2 Hosts, Firewalls, Policies

More complex objects are Hosts. They represent network nodes (servers, work-
stations, routers, IP printers, etc.). Hosts can have multiple interfaces with
static or dynamic IP addresses.

A Firewall is a special kind of host, which will be running firewall software
and could be configured using Firewall Builder. The user must specify what
OS platform and firewall software they are using (some platforms allow the user
to select from several firewall packages). For firewalls, the user can define a
Firewall Policy and NAT Rules.

Firewall Policy consists of a set of firewall rules. Each rule has a source and
destination, service, interface, direction, time and an action. Rule-matching
semantics will be explained in Section 2.3.

NAT Rules specify how the firewall host performs network address transla-
tion, changing sources and destinations of passing packets.

2.1.3 Utility Objects

Objects in these categories are various convenience objects, representing higher-
level concepts which are easy to use when describing firewall policies.

Address Range Range of IPv4 addesses. Specified by first and last address.

Address Table List to IPv4 addresses which is specified in an external file
that can be loaded at policy compile time, or at the time of deployment of
generated firewall policy, depending on the option configured in the Ad-
dress Table object. Such lists are commonly used to maintain dynamically
updated black lists of spammers or intruders.

Groups Various objects could be combined into named groups for the conve-
nience of referencing them as such in policy rules. Users typically group

5

hosts, IP addresses, services and time intervals. Groups are “typed”. That
means that groups can contain only objects of the same type.

2.2 Syntax

The policy is expressed as an Extensive Markup Language (XML[6]) document.
The grammar of this document is specified as a Document Type Definition
(DTD) file. The DTD file for the current version is shown in Appendix A.

Each object has an unique id attribute. This attribute is used to establish
references between objects.

Here are some examples, to illustrate the syntax we use. First, some simple
objects:

Listing 1: Network Object
<Network id=” id47505CE816470” name=”officeLAN” address=” 10 . 8 6 . 8 1 . 0 ” netmask=”

255 . 255 . 255 . 0 ”/>

Listing 2: UDP Service Object
<UDPService id=” id47505D0216470” name=”MyServie” dst range end=”92” d s t r a n g e s t a r t=

”90” s r c range end=”70” s r c r a n g e s t a r t=”30”/>

Now let us take a look at a firewall with a simple single-rule policy1, shown
on listing 3.

Listing 3: Firewall Object
1 <Firewall host OS=” l inux24 ” id=” id47505D0516470” name=”MyFirewall ” plat form=”

i p t ab l e s ”>

2 <Interface dyn=”False ” id=”id47505D0B16470” name=” i f 0 ” unnum=”False ”>

3 <IPv4 address=” 192 . 168 . 1 . 1 ” id=”id47505D0C16470” name=” MyF i r ewa l l : i f 0 : i p ”
netmask=” 255 . 255 . 255 . 0 ”/>

4 <physAddress address=”00 : 1 7 : f 2 : e a : e e : 3 5 ” id=” id47505D3816470” name=”
MyFirewal l : i f 0 :mac ”/>

5 </ Interface>

6 <Interface dyn=”True” id=”id47505D0D16470” name=” i f 1 ” unnum=”False ”/>

7 <Interface dyn=”False ” id=” id47505D0F16470” name=” l0 ” unnum=”False ”
unprotected=”False ”>

8 <IPv4 address=” 127 . 0 . 0 . 1 ” id=” id47505D1016470” name=” MyF i r ewa l l : l 0 : i p ”
netmask=” 255 . 255 . 0 . 0 ”/>

9 </ Interface>

10 <Policy id=” id47505D0816470”>

11 <PolicyRule act ion=”Deny” comment=”” d i r e c t i o n=”Both” d i sab l ed=”False ” id=
”id47505ECE16470” po s i t i on=”0”>

12 <Src neg=”False ”>

13 <ObjectRef r e f=” sys id0 ”/>

14 </Src>

15 <Dst neg=”False ”>

16 <ObjectRef r e f=” id47505CE816470”/>

17 </Dst>

18 <Srv neg=”False ”>

19 <ServiceRef r e f=” id47505D0216470”/>

20 </Srv>

1for clarity, some non-essential attributes and elements were omitted

6

21 <I t f neg=”False ”>

22 <ObjectRef r e f=” sys id0 ”/>

23 </ I t f>

24 <When neg=”False ”>

25 <IntervalRef r e f=” sys id2 ”/>

26 </When>

27 </PolicyRule>

28 </Policy>

29 </Firewall>

As we can see, the Firewall element includes the definition for three network
interfaces and a firewall policy.

Interface definitions are expressed as Interface elements. Interface if1 is
dynamic and has no static IP address associated with it. Interfaces if0 and lo0
have static IP addresses assocated with them. These IP addresses are expressed
as enclosing IPv4 elements. One may wonder why interface address was not
specified as an attribute. The answer is that an interface could have more than
one IP address assigned to it.

The firewall policy is expressed as a Policy element, and may contain one or
more PolicyRule elements. Because XML specification [6] does not guarantee
element order, policy rule ordering is implicitly specified via position attrbute
which defines PolicyRule absolute order within enclosing Policy element.

Direction and Action rule fields are specified via direction and action at-
tributes of a PolicyRule. Each PolicyRule rule element contains Src, Dst, Srv,
Itf, When sub-elements to specify Source, Destination, Service, Interface and
Time Interval rule fields respectively. Each of these elements could contain one
or more object references specifing their value.

Each of the field’s matching value could optionally be made negative by
specifying neg attribute. For example listing 4 demonstrates a destination which
is either an object with id A or B. Adding negation as shown on listing 5 changes
the meaning so that the destination must be neither A nor B.

Listing 4: Negation Example (withou negation)
<Dst neg=”False ”>

<ObjectRef r e f=”A”/>

<ObjectRef r e f=”B”/>

</Dst>

Listing 5: Negation Example (with negation)
<Dst neg=”True”>

<ObjectRef r e f=”A”/>

<ObjectRef r e f=”B”/>

</Dst>

7

As we have seen, there are two major ways to express relationships between
objects in the Firewall Builder XML. The first way is embedding - when one
object definition is enclosed in the other object definition element. An example
is an Interface embedded within a Firewall object, or a IPv4 object, embed-
ded within an Interface object. The second method uses a reference, via the
ObjectRef element. In this method, in place of the object which we are refer-
ing to, we place an ObjectRef element, which has its ref attribute set to the
value of id of the object we are reffering to. We can see such references in Src
and Dst elements of a PolicyRule referencing Network and UDPService objects
respectively in the example above.

2.3 Processing Model

It is not sufficient to define just Data Model to be able to write a firewall
policy. A data model implies certain semantics, defined as a processing model.
Processing model differs from one firewall platform to another. We will define an
abstract processing model to be used when defining policies of Abstract Firewall
and later on we will map it to processing models of concrete firewall platforms.

For each packet passing through a firewall, several processing stages are
applied. It is optionally processed via NAT Rules and then filtered by Firewall
Policy Rules. These stages can change the packet headers or even drop or reject
the whole packet.

While the sequence of NAT and filtering steps varies from platform to plat-
form in real firewalls (see section 3.4 for disuccion), in Firewall Builder’s abstract
firewall model, it is fixed and processing is always done in the following order:

1. Network Address Translation step is performed

2. Firewall Policy is applied

The packet is first matched towards all NAT rules, in the order they are
defined by the user. A NAT rule “matches” if the rule original source, original

destination and original service fields match the current packet and if it happens
within an optional time interval specified in the rule. (any matching fields may
be specified as Any - a wildcard which matches any value). A matched packet
is modified by replacing its source, destination and service fields with translated

source, translated destination and translated service from the rule. If some of
translated source, translated destination or translated service is left empty by

8

the user, it means that the original value of this field should be preseved. If a
packet has not matched any NAT rules, it will be processed further, unchanged.

Next, the packet is matched towards all Policy rules in the order they are
defined by user. For each packet the following fields are matched towards the
rules:

Source packet source address (IP or data link level)

Destination packet destination address (IP or data link level)

Service packet service (One of IP, UDP, ICMP service objects.)

Interface interface via which this packet has arrived

Direction direction of the packet, in respect to the firewall (Inbound or Out-
bound)

Any of these field could be excluded from matching if Any wildcard is spec-
ified as the value in the rule.

Once a packet has matched one of the rules, the action specified in the rule
is performed. Possible values are:

Accept the packet is permitted to pass through

Deny/Drop the packet is silently dropped

Reject the packet is rejected, notyfing the server via ICMP message

Accounting the packet counter associated with this rule is incremented

Although actual firewall implementations may vary in what happens once
a packet is matched (see section 3.3 for examples), in the Firewall Builder’s
abstract firewall model semantics are well defined:

For accept, deny and reject actions after the first rule is matched,
the approriate action is performed and no further rule checks are
performed. For accounting actions, after a counter value increase,
the packet matching is continued against any remaining rules.

After all rules have been processed and no accept, deny or reject action was
invoked, the default policy is applied. While the default policy could be differ-
ent in underlying firewall platforms (see section 3.2 for discussion), in Firewall
Builder’s abstract firewall model, the default policy is to perform a drop action
on every packet.

9

2.4 Policy Verification and Optimization

Even before the policy is compiled to concrete firewall syntax, there is certain
processing which could be done on the abstract policy model. The two main
areas are verification and optimization. Having well-defined processing model
and a policy expressed in a stadartized form, a generic high-level policy analysis
could be performed without needing to focus on the details of firewall platform
implementation.

2.4.1 Verification

While the XML syntax validation towards the DTD ensured that there are no
syntax errors in the document, it does not catch errors in semantics.

For example, we found it useful to show users a warning when some policy
rules will never be used. It is similar to unreachable code detection in program-
ming languages. For example, let us assume there are two identical rules (with
drop action), which differ only in the destination address field. The first rule has
destiation address 1.2.3.4/16 while the second rule has 1.2.3.4/32. Obviously,
all packets which could possibly match the second rule, will be matched by the
first rule first. We call this situation “rule shadowing”, saying that the first rule
“shadows” the second one. We try to detect such situations and report them to
the user, since they most likely signify an error in the user’s policy definition.

In addition to rule shadowing, in the future we can forsee other semantic
errors which can be detected and reported to the user. This is one of the areas
for the future research.

2.4.2 Optimization

There is a cost for executing each rule in a firewall. Long policies tend to affect
firewall performance. It is very beneficial to try to optimize firewall policy by
combining and reshuffling rules to make it shorter and hence more efficient.

Common optimization techniques include removing unusued or redundant
rules, grouping multiple rules into a single one, and in general to try to express
the same policy with the fewer rules.

10

3 Platform-specific challenges

Let us examine selected examples of platform specifics on pf, iptables and ipfilter

firewall platforms. All these problems are normally hidden from Firewall Builder
users, because the firewall hides all these platform-specific differences from the
user and generates platform-specific code to resolve these issues.

3.1 Implicit vs. Explicit Interface Specification

3.2 Default Policy

What should a firewall do with a packet which matched none of the policy rules?
Should it be allowed to pass through, or should it be discarded?

In iptables default policy is a user-configurable option.
In ipfilter packets are also passed by default, unless it is compiled with

IPFILTER DEFAULT BLOCK option[7].
In pf packets are passed by default

3.3 First vs. Last Policy Rule Matching

In typical packet filter, a packet is matched towards a list of rules. It could either
match or not match each rule. If a rule is matched, it makes a decision to permit
this packet (accept) or not (reject or drop). There are two common matching
strategies. In the first strategy, matching occurs until the first matching rule is
found. We will call it first match2. Another strategy is to match all rules, then
make a decision based on last match. We will call this strategy last match3.

iptables supports only the first match strategy.
ipfilter and pf both support last match strategy by default, unless quick

rule keyword was specified. This keyword intstructs the firewall to stop further
matching and use results from the current match as a final decision on whenever
packet should be permitted to pass.

3.4 NAT vs Firewall Rules Order

Often a firewall will perform both packet filtering and network address transla-
tion (NAT) functions. The obvious question is: in what order NAT and filtering
rules are applied? Are addresses translated first and then filters are checked,

2This strategy is also sometimes reffered to as the “single-trigger” approach
3This strategy is also sometimes reffered to as “mutli-trigger” approach

11

or vice-versa? This makes a big difference, because if NAT is applied first, one
should use already translated (not original) addresses in policy rules.

iptables destinguish two kind of NAT rules: SNAT (source NAT) and DNAT
(destination NAT). It could be said that DNAT is applied first, then packet
filtering, and then SNAT.

PIX, another popular firewall platform from CISCO performs packet filtering
first and then NAT.

Both ipfilter and pf perform address translation first and only then perform
filtering functions.4

3.5 Negation

Sometimes it is convenient to use negation in policy rules. For example, to
specify condition like “if source address is not 1.2.3.4”. A more complex form
of negation is to apply it to a group of addresses (“if source address is not in
{1.2.3.4, 10.20.30.40}”).

iptables support single address negation:

“Many flags, including the ‘-s’ (or ‘–source’) and ‘-d’ (‘–destination’)
flags can have their arguments preceded by ‘!’ (pronounced ‘not’)
to match addresses NOT equal to the ones given. For example. ‘-s
! localhost’ matches any packet not coming from localhost.”[13].

However for address ranges, support for which is facilitated by mod iprange

module, negation is not suported.
Both ipfilter supports negation (at least for addresses). No group negation

support is provided.
pf supports negation (at least for addresses). It also supports a limited

case of group negation, when using tables. For example, the following fragment
allows to pass all trafic from all addresses, except ones in the black list.

table <blacklist> {1.2.3.4 , 10.20.30.40}

pass in quick inet from any to ! <blacklist> keep state

3.6 Addrress Range Emulation

All firewalls allow the user to specify an individual IP address or CIDR block

in the rules. However, sometimes it is convenient to specify an address range
4In case of pf: “The only exception to this rule is when the pass keyword is used within

the nat rule. This will cause the NATed packets to pass right through the filtering engine.”[2]

12

(from - to).

iptables permits address ranges using iprange module.

Both ipfilter and pf do not support address ranges.

3.7 Dymanic Interfaces

Oftentimes, the IP address assigned to an interface is not known at the time of
the policy definition. This is common with dynamic interface, which obtains its
address using DHCP or a similar protocol. Abstract Firewall Policy allows the
user to implement such intefaces in policy rules, in place of source or destination
addresses.

pf permits the use of inteface names in the rules, and will use current interface
IP addresses at the time the rule is executed.

ipfilter is using special 0/32 notation to refer to currently assigned interface
IP address.

In the case of iptables there is no way to refer to the current interface
dynamically-assigned IP address in policy rules.

4 Abstract Policy Compilation Techniques

In this section we will briefly discuss some implementation approaches used to
compile and deploy Abstract Firewall policy to a concrete firewall platform.

An abstract firewall policy needs to be compiled into policy for the concrete
firewall. Usually this requires certain transformations. While overall rule data
structure remains rougly the same (source, destitatio, action, etc.), a target
firewall platform puts various limitations to the allowed values, and sometimes
even implies slightly different semantics.

We found it convenient to perform policy transformation as a series of small
steps. Each step could be viewed as a function, which takes as input a list of
policy rules and outputs a modified list of such rules. Some of these transforma-
tions are quite simple and could be reused between different firewall platforms.
These transformation functions are called Rule Processors. An example of a
rule processor could be one which takes a single rule with address ranges in the
rule source address and converts it to a group of rules, which together perform
the same function as the original rule, but each rule has a single CIDR block in
a source address field.

13

5 Related Work

There is a lot of related research in this area (see [9] for a good survey on the
subject).

Many approaches are concentrated on building an abstract security model,
and then applying to to the firewall policies (either automated genetation or
verification). Some models are using UML, some build upon RBAC model.

In our opinion, one of the problems with such approaches is the big repre-
sentation gap between the model abstractions and the concrete firewall device
processing and data model. Our approach is more pragmatic. Firewall Builder’s
abstract firewall model is very close to the one used in the many modern day
firewall devices. This model is familiar to the most firewall administrators and
easy to understand. Our model could act as intermediate representation be-
tween high-level models and formal languages and concrete firewall policies.

Al-Shaer et. al[3] present good formalization of firewall rules relationships
and classification of the anomalies which should be detected during policy ver-
ification.

6 Conclusions

In this paper we have presented in an overview form Firewall Builder’s approach
of corss-platform firewall management: the idea of an Abstract Firewall, the
data and a processing model of such firewall. In a few examples we have shown
the kind of challenges firewall adminstrators are facing when they are required
to work with multiple firewall platforms.

The definition of an abstract firewall model and policy definition language is
a first, enabling step which allows us to develop and apply various policy anal-
ysis and transformation techniques in a platform-independent manner. Policiy
verification and optimization techniques, briefly touced upon in the section 2.4
presents many interesting research challenges and opportunities.

Firwall Builder data files could contain multiple firewalls sharing common
utility objects (hosts, networks, etc.). This opens the opportunity for developing
more sophisticated policy analysis tools, considering not only a single firewall
but a network with several firewalls. Such a comprehensive distributed firewal
model could be analyzed for inter-firewall anomalies as well as intra-firewall

anomalies[3].
In the course of the project, we started to work on a formal model of policy

14

rules relationships. Such a model is required to implement non-trivial valida-
tion and optimization techniques. Our initial thinking was along the lines of
multi-dimensional space, where each rule field represents a dimension and a rule
represents a figure. Each packet is represented as a point in this space. If it
matches some rule, this point will be inside a figure represented by the rule.

References

[1] Firewall builder project. http://www.fwbuilder.org/.

[2] Pf: The openbsd packet filter. http://www.openbsd.org/faq/pf/.

[3] E. Al-Shaer and H. Hamed. Discovery of policy anomalies in distributed
firewalls. IEEE INFOCOM, 4:2605–2616, 2004.

[4] M. Bauer. Paranoid penguin: using firewall builder, Part I. Linux Journal,
2003(109), 2003.

[5] M. Bauer. Paranoid Penguin: Using Firewall Builder, Part II. Linux
Journal, 2003(110), 2003.

[6] T. Bray, J. Paoli, C.M. Sperberg-McQueen, et al. Extensible Markup Lan-
guage (XML) 1.0. W3C Recommendation, 6, 2000.

[7] B. Conoboy and E. Fichtner. IP Filter Based Firewalls HOWTO. Sat,
22(26):2001, 1911.

[8] F. Cuppens, N. Cuppens-Boulahia, and J. Garcıa-Alfaro. Detection and
Removal of Firewall Misconfiguration. Proceedings of the 2005 IASTED In-
ternational Conference on Communication, Network and Information Se-
curity (CNIS 2005), 2005.

[9] A. El-Atawy. Survey on the use of formal languages/models for the spec-
ification, verification, and enforcement of network access-lists. School of
Computer Science, Telecommunication, and Information Systems, DePaul
University, Chicago, Illinois, 60604.

[10] V. Kurland. Firewall Builder. 11th DFN-CERT Workshop, Hamburg, Ger-
many, 2004.

[11] NetCitadel LLC. Firewall Builder User’s Guide. 2003.

15

[12] Y. Rekhter, B. Moskowitz, D. Karrenberg, GJ de Groot, and E. Lear.
RFC1918: Address Allocation for Private Internets. Internet RFCs, 1996.

[13] R. RUSSELL. Linux 2.4 packet filtering howto, 2004.

[14] V. Zaliva. Managing xml documents versions and upgrades with xslt. 2001.

Appendices

A Firewall Builder DTD
<?xml version="1.0" encoding="utf-8"?>

<!--

Firewall Builder Document Type Definition

http://www.fwbuilder.org/

Version: $Revision: 1.41 $

Authors: Friedhelm Duesterhoeft, Vadim Zaliva, Vadim Kurland, Tidei Maurizio

TODO:

1. Allow groups of unrelated objects.

-->

<!ENTITY % BOOLEAN "(False|True)">

<!ENTITY % STRING "CDATA">

<!ENTITY % NUMBER "CDATA">

<!--

* Supported policy rule actions:

*

* Accept - accept the packet, analysis terminates

*

* Reject - reject the packet and send ICMP ’unreachable’ or

* TCP RST back to sender, analysis terminates

*

* Deny - drop the packet, nothing is sent back to sender,

* analysis terminates

*

* Scrub - run the packet through normalizer (see ’scrub’ in

* PF), continue analysis

*

* Return - action used internally, meaning may depend on

* implementation of the policy compiler but generally

* means return from the block of rules

*

* Skip - skip N rules down and continue analysis. Used

* internally.

*

* Continue - do nothing, continue analysis. Used internally.

*

* Accounting - generate target firewall platform rule to count

* the packet and continue analysis.

*

* Modify - edit the packet (change some header values, like

* TOS bits) or mark it somehow if the kernel supports

* that (e.g. target MARK in iptables)

*

* Tag - put a tag on the packet or mark it somehow

*

* Pipe - send the packet to the userland process for inspection

*

* Classify - classify the packet for QoS or traffic shaping

*

* Custom - platform-depended custom action

*

* Branch - branch to a subset of rules for inspection

*

-->

<!ENTITY % ACTION "(Accept|Reject|Deny|Scrub|Return|Skip|Continue|Accounting|Modify|Tag|Pipe|Classify|Custom|Branch|Route)">

<!ENTITY % DIRECTION "(Inbound|Outbound|Both)">

<!ENTITY % IPADDRESS "CDATA">

<!ENTITY % NETMASK "CDATA">

16

<!-- Standard attributes presented in all nodes -->

<!ENTITY % STD_ATTRIBUTES ’

name %STRING; #REQUIRED

comment %STRING; #IMPLIED

id ID #REQUIRED

ro %BOOLEAN; #IMPLIED

’>

<!-- Standard attributes for all system nodes -->

<!ENTITY % SYS_ATTRIBUTES ’

’>

<!--

**** Document structure, main groups. ****

-->

<!ELEMENT FWObjectDatabase (Library*)>

<!ATTLIST FWObjectDatabase

xmlns CDATA #FIXED "http://www.fwbuilder.org/1.0/"

version %STRING; #FIXED "2.1.14"

lastModified %NUMBER; #IMPLIED

id ID #REQUIRED

>

<!ELEMENT Library ((AnyNetwork|AnyIPService|AnyInterval|ObjectGroup|Host|Firewall|

Network|IPv4|DNSName|AddressTable|physAddress|AddressRange|ObjectRef|ServiceGroup|

IPService|ICMPService|TCPService|UDPService|CustomService|ServiceRef|

IntervalGroup|Interval|IntervalRef|Interface|Policy|NAT|PolicyRule|

NATRule|Library|TagService)*)>

<!ATTLIST Library

%STD_ATTRIBUTES;

color %STRING; #IMPLIED

>

<!--

**** Document structure, Services. ****

-->

<!ELEMENT AnyIPService EMPTY>

<!ATTLIST AnyIPService

%SYS_ATTRIBUTES;

%STD_ATTRIBUTES;

protocol_num %NUMBER; #FIXED "0"

>

<!-- Reference to Services child -->

<!ELEMENT ServiceRef EMPTY>

<!ATTLIST ServiceRef

ref IDREF #REQUIRED

>

<!ELEMENT ServiceGroup ((ServiceGroup | IPService | ICMPService | TCPService | UDPService | CustomService | ServiceRef | TagService)*)>

<!ATTLIST ServiceGroup

%STD_ATTRIBUTES;

>

<!--

**** Document structure, Objects. ****

-->

<!-- Reference to Objects child -->

<!ELEMENT ObjectRef EMPTY>

<!ATTLIST ObjectRef

ref IDREF #REQUIRED

>

<!ELEMENT ObjectGroup ((ObjectGroup|Host|Firewall|Network|IPv4|DNSName|AddressTable|AddressRange|ObjectRef)*)>

<!ATTLIST ObjectGroup

%STD_ATTRIBUTES;

>

<!--

This element will contain elements with platform specific

options.

<Options>

<Option name="option1_name">Value1</Option>

<Option name="option2_name">Value2</Option>

</Options>

Since list of compilers is open (everybody could write his

own compiler) we do not define content model for this element.

-->

<!ELEMENT Option ANY>

<!ATTLIST Option

name %STRING; #REQUIRED

>

17

<!ELEMENT PolicyRuleOptions (Option*)>

<!ELEMENT NATRuleOptions (Option*)>

<!ELEMENT RoutingRuleOptions (Option*)>

<!ELEMENT FirewallOptions (Option*)>

<!ELEMENT HostOptions (Option*)>

<!ELEMENT GatewayOptions (Option*)>

<!--

**** Document structure, rest ****

-->

<!ELEMENT NATRule (OSrc,ODst,OSrv,TSrc,TDst,TSrv,When?, NATRuleOptions?, NAT?)>

<!ATTLIST NATRule

id ID #REQUIRED

disabled %BOOLEAN; "False"

position %NUMBER; #REQUIRED

comment %STRING; #IMPLIED

>

<!ELEMENT When (IntervalRef*)>

<!ATTLIST When

neg %BOOLEAN; #REQUIRED

>

<!ELEMENT OSrc (ObjectRef*)>

<!ATTLIST OSrc

neg %BOOLEAN; #REQUIRED

>

<!ELEMENT ODst (ObjectRef*)>

<!ATTLIST ODst

neg %BOOLEAN; #REQUIRED

>

<!ELEMENT OSrv (ServiceRef*)>

<!ATTLIST OSrv

neg %BOOLEAN; #REQUIRED

>

<!ELEMENT TSrc (ObjectRef*)>

<!ATTLIST TSrc

neg %BOOLEAN; #REQUIRED

>

<!ELEMENT TDst (ObjectRef*)>

<!ATTLIST TDst

neg %BOOLEAN; #REQUIRED

>

<!ELEMENT TSrv (ServiceRef*)>

<!ATTLIST TSrv

neg %BOOLEAN; #REQUIRED

>

<!ELEMENT RoutingRule (RDst,RGtw,RItf, RoutingRuleOptions?, Routing?)>

<!ATTLIST RoutingRule

id ID #REQUIRED

disabled %BOOLEAN; "False"

position %NUMBER; #REQUIRED

metric %NUMBER; "0"

comment %STRING; #IMPLIED

>

<!ELEMENT RDst (ObjectRef*)>

<!ATTLIST RDst

neg %BOOLEAN; #REQUIRED

>

<!ELEMENT RGtw (ObjectRef*)>

<!ATTLIST RGtw

neg %BOOLEAN; #REQUIRED

>

<!ELEMENT RItf (ObjectRef*)>

<!ATTLIST RItf

neg %BOOLEAN; #REQUIRED

>

<!ELEMENT PolicyRule (Src,Dst,Srv?,Itf?,When?,PolicyRuleOptions?,Policy?)>

<!ATTLIST PolicyRule

id ID #REQUIRED

disabled %BOOLEAN; "False"

position %NUMBER; #REQUIRED

direction %DIRECTION; #IMPLIED

action %ACTION; #REQUIRED

log %BOOLEAN; #REQUIRED

comment %STRING; #IMPLIED

18

>

<!ELEMENT Src (ObjectRef*)>

<!ATTLIST Src

neg %BOOLEAN; #REQUIRED

>

<!ELEMENT Dst (ObjectRef*)>

<!ATTLIST Dst

neg %BOOLEAN; #REQUIRED

>

<!ELEMENT Srv (ServiceRef*)>

<!ATTLIST Srv

neg %BOOLEAN; #REQUIRED

>

<!ELEMENT Itf (ObjectRef*)>

<!ATTLIST Itf

neg %BOOLEAN; #REQUIRED

>

<!--

hardware or physical address (MAC, DLCI etc.)

-->

<!ELEMENT physAddress EMPTY>

<!ATTLIST physAddress

%STD_ATTRIBUTES;

address %STRING; #REQUIRED

>

<!ELEMENT IPv4 EMPTY>

<!ATTLIST IPv4

%STD_ATTRIBUTES;

address %IPADDRESS; #REQUIRED

netmask %NETMASK; #REQUIRED

>

<!ELEMENT DNSName EMPTY>

<!ATTLIST DNSName

%STD_ATTRIBUTES;

dnsrec %STRING; #REQUIRED

run_time %BOOLEAN; #REQUIRED

>

<!ELEMENT AddressTable ((IPv4|ObjectRef)*)>

<!ATTLIST AddressTable

%STD_ATTRIBUTES;

filename %STRING; #REQUIRED

run_time %BOOLEAN; #REQUIRED

>

<!--

Interface can have the following attributes:

- dyn interface has dynamically assigned address

- unnum interface is unnumbered (does not have IP address, but

may still have MAC address)

- bridgeport interface serves as a bridge port on bridging firewall.

The difference between bridge port and unnumbered interface

is that compilers may use special modules or commands for

bridge ports on platforms that support them, such as

module physdev for iptables.

- mgmt this is management interface

- physAddress MAC address of this interface

- security_level

- network_zone ID of the object representing network zone

- unprotected Skip this interface while assigning access lists or policy rules

- label human-readable label of this interface

-->

<!ELEMENT Interface (IPv4*, physAddress?)>

<!ATTLIST Interface

%STD_ATTRIBUTES;

dyn %BOOLEAN; #REQUIRED

unnum %BOOLEAN; #IMPLIED

mgmt %BOOLEAN; #IMPLIED

bridgeport %BOOLEAN; #IMPLIED

security_level %NUMBER; #REQUIRED

network_zone IDREF #IMPLIED

unprotected %BOOLEAN; #IMPLIED

label %STRING; #IMPLIED

>

<!-- Remote management information for Firewall, Host, Gateway -->

<!ELEMENT Management (SNMPManagement? , FWBDManagement?, PolicyInstallScript?)>

<!ATTLIST Management

address %IPADDRESS; #REQUIRED

>

19

<!-- User-defined custom policy installation script for Firewall -->

<!ELEMENT PolicyInstallScript EMPTY>

<!ATTLIST PolicyInstallScript

enabled %BOOLEAN; "False"

command %STRING; #IMPLIED

arguments %STRING; #IMPLIED

>

<!-- SNMP management information for Firewall, Host, Gateway -->

<!ELEMENT SNMPManagement EMPTY>

<!ATTLIST SNMPManagement

enabled %BOOLEAN; "False"

snmp_read_community %STRING; #IMPLIED

snmp_write_community %STRING; #IMPLIED

>

<!-- FWBD management information for Firewall, Host, Gateway -->

<!ELEMENT FWBDManagement (PublicKey?)>

<!ATTLIST FWBDManagement

enabled %BOOLEAN; "False"

port %NUMBER; #REQUIRED

identity %STRING; #REQUIRED

>

<!-- Remote FWBD public key for Firewall, Host, Gateway -->

<!ELEMENT PublicKey (#PCDATA)>

<!ELEMENT Host (Interface*, Management?, HostOptions?)>

<!ATTLIST Host

%STD_ATTRIBUTES;

host_OS %STRING; #IMPLIED

>

<!ELEMENT AnyNetwork EMPTY>

<!ATTLIST AnyNetwork

%SYS_ATTRIBUTES;

%STD_ATTRIBUTES;

address %IPADDRESS; #FIXED "0.0.0.0"

netmask %NETMASK; #FIXED "0.0.0.0"

>

<!ELEMENT Network EMPTY>

<!ATTLIST Network

%STD_ATTRIBUTES;

address %IPADDRESS; #REQUIRED

netmask %NETMASK; #REQUIRED

>

<!ELEMENT AddressRange EMPTY>

<!ATTLIST AddressRange

%STD_ATTRIBUTES;

start_address %IPADDRESS; #REQUIRED

end_address %IPADDRESS; #REQUIRED

>

<!ELEMENT ICMPService EMPTY>

<!ATTLIST ICMPService

%STD_ATTRIBUTES;

code %NUMBER; #REQUIRED

type %NUMBER; #REQUIRED

>

<!ELEMENT TagService EMPTY>

<!ATTLIST TagService

%STD_ATTRIBUTES;

tagcode %STRING; #REQUIRED

>

<!ELEMENT IPService EMPTY>

<!ATTLIST IPService

%STD_ATTRIBUTES;

protocol_num %NUMBER; #REQUIRED

fragm %BOOLEAN; #IMPLIED

lsrr %BOOLEAN; #IMPLIED

rr %BOOLEAN; #IMPLIED

short_fragm %BOOLEAN; #IMPLIED

ssrr %BOOLEAN; #IMPLIED

ts %BOOLEAN; #IMPLIED

>

<!ELEMENT TCPService EMPTY>

<!ATTLIST TCPService

%STD_ATTRIBUTES;

dst_range_end %NUMBER; #REQUIRED

dst_range_start %NUMBER; #REQUIRED

urg_flag %BOOLEAN; #REQUIRED

ack_flag %BOOLEAN; #REQUIRED

psh_flag %BOOLEAN; #REQUIRED

rst_flag %BOOLEAN; #REQUIRED

syn_flag %BOOLEAN; #REQUIRED

20

fin_flag %BOOLEAN; #REQUIRED

urg_flag_mask %BOOLEAN; #REQUIRED

ack_flag_mask %BOOLEAN; #REQUIRED

psh_flag_mask %BOOLEAN; #REQUIRED

rst_flag_mask %BOOLEAN; #REQUIRED

syn_flag_mask %BOOLEAN; #REQUIRED

fin_flag_mask %BOOLEAN; #REQUIRED

src_range_end %NUMBER; #REQUIRED

src_range_start %NUMBER; #REQUIRED

established %BOOLEAN; #IMPLIED

>

<!ELEMENT UDPService EMPTY>

<!ATTLIST UDPService

%STD_ATTRIBUTES;

dst_range_end %NUMBER; #REQUIRED

dst_range_start %NUMBER; #REQUIRED

src_range_end %NUMBER; #REQUIRED

src_range_start %NUMBER; #REQUIRED

>

<!ELEMENT CustomServiceCommand (#PCDATA)>

<!ATTLIST CustomServiceCommand

platform %STRING; #REQUIRED

>

<!ELEMENT CustomService (CustomServiceCommand*)>

<!ATTLIST CustomService

%STD_ATTRIBUTES;

>

<!ELEMENT Gateway (Interface* , Management?, GatewayOptions?)>

<!ATTLIST Gateway

%STD_ATTRIBUTES;

address %IPADDRESS; #REQUIRED

host_OS %STRING; #IMPLIED

>

<!ELEMENT Firewall (NAT , Policy , Routing , Interface* , Management?, FirewallOptions?)>

<!ATTLIST Firewall

%STD_ATTRIBUTES;

platform %STRING; #REQUIRED

version %STRING; #IMPLIED

host_OS %STRING; #IMPLIED

lastModified %NUMBER; #IMPLIED

lastInstalled %NUMBER; #IMPLIED

lastCompiled %NUMBER; #IMPLIED

inactive %BOOLEAN; #IMPLIED

>

<!ELEMENT NAT (NATRule*)>

<!ATTLIST NAT

id ID #REQUIRED

>

<!ELEMENT Policy (PolicyRule*)>

<!ATTLIST Policy

id ID #REQUIRED

>

<!ELEMENT Routing (RoutingRule*)>

<!ATTLIST Routing

id ID #REQUIRED

>

<!-- Time -->

<!ELEMENT IntervalGroup ((IntervalGroup|Interval|IntervalRef)*)>

<!ATTLIST IntervalGroup

%STD_ATTRIBUTES;

>

<!-- Reference to time interval -->

<!ELEMENT IntervalRef EMPTY>

<!ATTLIST IntervalRef

ref IDREF #REQUIRED

>

<!ELEMENT Interval EMPTY>

<!ATTLIST Interval

%STD_ATTRIBUTES;

from_second %NUMBER; "-1"

from_minute %NUMBER; "-1"

from_hour %NUMBER; "-1"

from_day %NUMBER; "-1"

from_month %NUMBER; "-1"

from_year %NUMBER; "-1"

from_weekday %NUMBER; "-1"

to_second %NUMBER; "-1"

21

to_minute %NUMBER; "-1"

to_hour %NUMBER; "-1"

to_day %NUMBER; "-1"

to_month %NUMBER; "-1"

to_year %NUMBER; "-1"

to_weekday %NUMBER; "-1"

>

<!ELEMENT AnyInterval EMPTY>

<!ATTLIST AnyInterval

%SYS_ATTRIBUTES;

%STD_ATTRIBUTES;

from_second %NUMBER; #FIXED "-1"

from_minute %NUMBER; #FIXED "-1"

from_hour %NUMBER; #FIXED "-1"

from_day %NUMBER; #FIXED "-1"

from_month %NUMBER; #FIXED "-1"

from_year %NUMBER; #FIXED "-1"

from_weekday %NUMBER; #FIXED "-1"

to_second %NUMBER; #FIXED "-1"

to_minute %NUMBER; #FIXED "-1"

to_hour %NUMBER; #FIXED "-1"

to_day %NUMBER; #FIXED "-1"

to_month %NUMBER; #FIXED "-1"

to_year %NUMBER; #FIXED "-1"

to_weekday %NUMBER; #FIXED "-1"

>

22

	Introduction
	Abstract Firewall
	Data Model
	Basic Networking Objects
	Hosts, Firewalls, Policies
	Utility Objects

	Syntax
	Processing Model
	Policy Verification and Optimization
	Verification
	Optimization

	Platform-specific challenges
	Implicit vs. Explicit Interface Specification
	Default Policy
	First vs. Last Policy Rule Matching
	NAT vs Firewall Rules Order
	Negation
	Addrress Range Emulation
	Dymanic Interfaces

	Abstract Policy Compilation Techniques
	Related Work
	Conclusions
	Appendices
	Firewall Builder DTD

