
Formal Verification of HCOL Rewriting
Vadim Zaliva and Franz Franchetti

Carnegie Mellon University

June 7, 2015

Abstract—The SPIRAL system allows users to synthesize resource-
efficient, platform-adapted implementations of controllers for vehic-
ular systems. It uses Hybrid Control Operator Language (HCOL)
which takes advantage of advanced mathematical constructs to
express controller specification, which is transformed through a
series of steps into highly-optimized code for a target platform in
a language, such as C or C++. An ongoing effort, part of which
is described in this paper, is aimed at providing high-assurance
guarantees for SPIRAL-generated controller implementations using
a formal-methods based approach using the Coq proof assistant.

I. INTRODUCTION

This work was done in the scope of a High-Assurance Cyber
Military Systems (HACMS) DARPA project. The goals were to
synthesize executable code for the control system of a robot
satisfying certain safety and security properties and to produce
machine-checkable proofs assuring that this code implements
functional specification. We use the Coq proof assistant[1] to
interactively develop machine-checked proofs.

A high-level approach for synthesizing high-assurance code
for vehicular systems is discussed in [2]. The authors show
how a vehicular control system could be specified in HCOL
language, allowing automatic code generation. Moreover, the
paper summarizes how HCOL specifications are transformed to
the code via a series of steps, and it outlines directions for how
each of these steps can be formally verified. Following these
directions, our work thus far verifies the HCOL rewriting step.

Leroy et al. in [3] formally define semantic preservation,
which states that the source and compiled programs (s and c
respectively) must have exactly the same observable behaviours
b. They use notation s ≈ c to express such semantic preservation.
Translation validation is one of approaches, which we used
to prove semantics preservation of SPIRAL’s HCOL transfor-
mations (modelled as Comp function). With this approach, the
compiler is complemented by a validator – a predicate function
Validate(s,c) which validates s ≈ c after the compilation.
Thus, under translation validation, instead of validating the
compiler, we just validate the compilation results[3]:

∀s c,Validate(s, c) = true =⇒ s ≈ c (1)

Additionally, the correctness of the validator needs to be
established.

To verify the SPIRAL HCOL rewriting subsystem, we first for-
malize HCOL in the Coq proof assistant as described in Section II.
One of the challenges is the choice of representation for data types
on which operators are defined. Using R as a main carrier type is
too limiting, as many HCOL operators can be applied to a variety
of types, such as integers or complex numbers. Moreover, at later
stages of formalization of the SPIRAL processing chain, we have
to ensure validity of our proofs for hardware types, such as IEEE
float or double.

Because most of SPIRAL’s HCOL transformations are alge-
braic in nature, we have taken abstract algebra as the foundation

for formalization of operator types. Coq does not include com-
prehensive abstract algebra definitions as a part of its standard
library, so we used the MathClasses library described in [4].
In this library, algebraic structures are represented as interfaces,
expressed as Coq type classes, which mandate what operations
the types should provide and what proofs they need to supply.

II. HCOL FORMALIZATION

A. HCOL Overview

HCOL allows us to express matrix and vector products in
compact form using operators. Below is a brief overview of the
HCOL language and definitions of some HCOL operators along
with a sample SPIRAL rewriting rule.

a) Basic HCOL operators: are functions which take a vector
of reals and return a vector of reals. The mathematical definitions
of some of the operators are shown below. In formalization and
actual implementation, all input and output values are coerced to
vectors via implicit isomorphisms such as Rm×Rn ∼= Rm+n and
R ∼= R1.

Polynomialn,(a∈Rn) : R→ R : x 7→
n∑

i=0

aix
i

ScalarProdn : Rn × Rn → R : (x,y) 7→
n−1∑
i=0

xiyi

Reductionn,f,id : Rn → R :

x 7→ f(xn−1, f(xn−2, f(. . . f(x0, id) . . . )

Pointwisen,f : Rn × Rn → Rn :

(x,y) 7→ f(x0,y0)⊕ · · · ⊕ f(xn−1,yn−1)

b) Higher Order Operators: allow us to construct new
operators by combining existing ones. An example of such an
operator is the function composition of two operators:

(◦) : (S → R)× (D → S)→ (D → R) : (f, g) 7→ f ◦ g

Breakdown Rules: The core of SPIRAL is the rule-rewriting
system which rewrites HCOL expressions according to break-
down rules. Each rule is expressed in the form A → B which
means, whenever expression A is encountered, it can be replaced
with expression B. Below is an example of a SPIRAL breakdown
rule:

ScalarProdn → Reductionn,(a,b)7→a+b,0 ◦Pointwisen,(a,b)7→ab

(2)
It represents the scalar product operator as a function compo-

sition of the reduction and pointwise operators.

B. HCOL Operators in Coq

HCOL operators are defined as Coq functions. While in SPI-
RAL implementation all operators use type R, in our Coq defini-
tions, we have defined operators on a generic type, stipulating for
each of them required properties of such type via type classes.

1



For example, the definitions of Polynomial operator is shown
below:
Fixpoint EvalPolynomial {n} ‘{SemiRing A}

(a: vector A n) (x:A) : A :=
match a with

nil ⇒ 0
| cons a0 p a’ ⇒ a0 + (x × (EvalPolynomial a’ x))

end.

It requires carrier type A to be a semiring, and the definition
has type An → A→ A.

C. Abstract Syntax

An HCOL expression can be represented by an Abstract Syntax
Tree (AST) where leaves correspond to basic operators while
internal nodes correspond to higher order operators. An AST for
a subset of HCOL expressions can be formalized in Coq using
the following inductive type:

Inductive HOperator : nat → nat → Type :=
| HOReduction: ∀ m (f : A→A→A)

‘{pF: !Proper ((=) ==> (=) ==> (=)) f} (id:A), HOperator m 1
| HOPointWise: ∀ n (f :A→A→A)

‘{pF: !Proper ((=) ==> (=) ==> (=)) f}, HOperator (n+n) n
| HOScalarProd: ∀ {k:nat}, HOperator (k+k) 1
| HOEvalPolynomial: ∀ {n} (a:vector A n), HOperator 1 1
| HOCompose: ∀ m {k} n, HOperator k n → HOperator m k
→ HOperator m n.

Type constructors correspond to individual HCOL operators,
both basic, such as HOScalarProd, as well as higher order, such
as HOCompose.

D. Semantics

Using the type we defined, any given HCOL expression could
be represented in Coq as an object of type HOperator. The
semantics of these objects are defined via an evaluation function,
which takes an HOperator object and an input vector and returns
the resulting vector:

evalHCOL: ∀ {m n}, HOperator m n → vector A m → vector A n.

The implementation of this function is mostly straightforward
mapping between HOperator constructors and our functions im-
plementing HCOL operators. To be able to evaluate any operator,
evalHCOL is defined on a carrier type A, which must be an
instance of all type classes mandated by the implementations of
individual operators.

III. VALIDATING HCOL REWRITING

Given the original and transformed HCOL expressions (s
and c respectively per Equation 1), we verify SPIRAL HCOL
rewriting by defining the Validate function as an HCOL operator
equivalence, as discussed below.

A. Equality

The Coq default notion of equality (eq function or = notation)
provides definitional equality which requires objects’ internal
structures to be the same in order for them to declared equal.
However, such a notion of equality is too restrictive. For example,
it doesn’t allow us to work with rational numbers represented
by non-reduced integer fractions, i.e. 2

2 6=
4
4 . Thus, we use

a generalized equivalence relation which we can define for a

particular type. In other words, we work on a type equipped with
an equivalence relation.

Type class Equiv defines the equal relation for a given type.
Its subclass, Setoid, additionally requires this relation to be
an equivalence relation by requiring proofs that it is transitive,
commutative, and reflexive.

After we mandate our carrier type to be a Setoid, we prove
that vectors of this type are also Setoids and define the equality
of HCOL operators:
Global Instance HCOL equiv {i o:nat}: Equiv (HOperator i

o) := fun a b ⇒ ∀ (x:vector A i), evalHCOL a x = evalHCOL b x.

Informally, it could be described as follows: two operators a
and b are equal if for any input vector x the values of evalHCOL
a x and evalHCOL b x are also equal.

Finally, we can declare our HOperator type to be a Setoid
by using the equality definition above and by proving transitivity,
commutativity, and reflexivity.

B. Proving Breakdown Rules
During the first stage of SPIRAL processing, an HCOL spec-

ification is transformed into an optimized form via a series of
term rewriting steps. To satisfy high-assurance requirements, we
need to produce a machine-checkable proof that these rewriting
steps have no effect on the semantics of the specification.

We now have all the tools which allow us to formalize HCOL
breakdown rules in Coq. We can express each rule as a lemma
stating equality of two operators. For example, the following
HCOL breakdown rule from Equation 2 could be expressed as
the following Coq lemma:
Lemma breakdown ScalarProd: ∀ {h:nat},

HOScalarProd (h:=h) =
HOCompose

(HOReduction (+) 0)
(HOPointWise (.*.)).

Each such lemma corresponds to a breakdown rule that needs
to be proven. Because HCOL operator equality is transitive, we
can easily prove equality of the source and result of a chain of
breakdown rule applications by proving breakdown rule lemmas
for each step.

IV. RESULTS

We applied our formalization and validation approach to val-
idate the HCOL rewriting part of the SPIRAL which were used
to generate implementation of the safety monitor which provides
collision safety guarantees for the Landshark robot.

The rewriting of the constraint operator was validated by prov-
ing 76 lemmas describing 7 breakdown rules and took 2,138 lines
of Coq code. Although the initial formalization of HCOL covered
only a modest subset of the language, it laid the foundation
and validated a methodology for proceeding with the full HCOL
formalization.

REFERENCES

[1] The Coq development team, The Coq proof assistant reference manual,
LogiCal Project, 2012, version 8.4. [Online]. Available: http://coq.inria.fr

[2] F. Franchetti, A. Sandryhaila, and J. R. Johnson, “High assurance SPIRAL,”
in SPIE 9091, Signal Process. Sensor/Information Fusion, Target Recognit.,
I. Kadar, Ed., Jun. 2014, p. 90911O.

[3] X. Leroy, “Formal verification of a realistic compiler,” p. 107, 2009.
[4] B. Spitters and E. van der Weegen, “Type Classes for Mathematics in Type

Theory,” Math. Struct. Comput. Sci., vol. 21, no. 04, pp. 795–825, Jul. 2011.

nil.html#http://coq.inria.fr/distrib/8.4pl5/stdlib/Coq.Vectors.Vector
cons.html#http://coq.inria.fr/distrib/8.4pl5/stdlib/Coq.Vectors.Vector
nat.html
nat.html
Proper.html#http://coq.inria.fr/distrib/8.4pl5/stdlib/Coq.Classes.Morphisms
ProperNotations.:signature scope:x '==>' x.html#http://coq.inria.fr/distrib/8.4pl5/stdlib/Coq.Classes.Morphisms
ProperNotations.:signature scope:x '==>' x.html#http://coq.inria.fr/distrib/8.4pl5/stdlib/Coq.Classes.Morphisms
Proper.html#http://coq.inria.fr/distrib/8.4pl5/stdlib/Coq.Classes.Morphisms
ProperNotations.:signature scope:x '==>' x.html#http://coq.inria.fr/distrib/8.4pl5/stdlib/Coq.Classes.Morphisms
ProperNotations.:signature scope:x '==>' x.html#http://coq.inria.fr/distrib/8.4pl5/stdlib/Coq.Classes.Morphisms
:nat scope:x '+' x.html#http://coq.inria.fr/distrib/8.4pl5/stdlib/Coq.Init.Peano
nat.html#http://coq.inria.fr/distrib/8.4pl5/stdlib/Coq.Init.Datatypes
:nat scope:x '+' x.html#http://coq.inria.fr/distrib/8.4pl5/stdlib/Coq.Init.Peano
nat.html
http://coq.inria.fr

	Introduction
	HCOL Formalization
	HCOL Overview
	HCOL Operators in Coq
	Abstract Syntax
	Semantics

	Validating HCOL rewriting
	Equality
	Proving Breakdown Rules

	Results
	References

