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Abstract—Modern touch screen sensors are capable of detect-
ing and reporting finger presence not only upon contact but also
as the finger is approaching the screen. This gives us a wealth of
additional information, which to the best of our knowledge, has
never been analyzed before. Using these new sensor capabilities,
we can see exactly how a user performs gestures starting from
the finger’s approach through the actual touching of the screen.

We decode proximity data which we collect from the mobile
phone sensor and extract finger “traces” from each user along
with the contact area shapes, which we use to distinguish between
the owner and one of the other users. To further improve
the classifier’s accuracy, we develop a sequential classification
approach using a probability ratio test of artificial neural network
outputs which makes a decision in minimal time based on pre-
defined accuracy goals. The data not only allows discrimination
between users but also detection of their dominant hand. These
techniques could be used in many practical applications, such as
passive user authentication or personalization.

Our experiments show that after just 5 touches, or in 12.6
seconds on average, we can correctly distinguish the primary user
from any of 14 other known users using proximity data to model
the finger’s approach pattern.

I. INTRODUCTION

The rapid adoption of smart phones over the past 5 years
has changed our communication habits. A large portion of our
information access, generation, and sharing has shifted from
desktop to mobile platforms. Consequently, more and more
sensitive information, such as email and financial data, is kept
on mobile devices. In addition, the small and portable nature of
mobile devices makes them easy targets for attackers. Stolen
devices and unauthorized use of mobile devices have become
major concerns in information security.

Modern touch screen sensors are capable of detecting and
reporting finger presence not only upon contact but also as the
finger is approaching the screen. In this paper, we study the
effectiveness of using proximity sensor data to model the finger
approach behavior of a user, and we exploit this approach
behavior for passive authentication.

Modern mobile phones equipped with proximity-sensitive
touch screens include Samsung Galaxy S4 and Sony Xperia.
We distinguish three phases of user interaction with the touch
screen. An approach phase starts when the sensor first detects
a finger prior to its physical contact with the screen. The sensor

provides the finger distance from the screen and its position
in screen coordinates. The touch phase commences when the
finger actually touches the screen. At this moment, besides
actual touch position, additional information about the shape
of the finger’s imprint becomes available. After the touch, the
tracking phase records the finger position as long as it remains
in contact with the screen.

We envision a scenario in which a background process
continuously analyzes the user’s finger approach and touch
information in real-time. If it detects that the phone is being
used by someone other than the owner or primary user, the
process could lock the screen and require the appropriate pass-
word to unlock it. Under this scheme, a preemptive mandatory
user authentication (entering a PIN when the phone is switched
on) is replaced by non-intrusive background monitoring, which
could arguably be more user-friendly.

II. BACKGROUND AND RELATED WORK

Several works have used mobile sensor data to extract a
model of users’ behavior for authentication [5], [6]. Some
works concentrate on authentication while others, like this
work, concentrate on identifying a user from a pool [1], [12].
On desktop computers, this type of passive authentication has
been studied using keystroke dynamics [7], [11], [13]. There
were attempts to authenticate users on mobile devices using
their keystroke dynamics with feature sets that are similar
to those used in desktops [3], [10]. A more recent work,
KeySens [4], has examined features unique to mobile devices.
However, we leverage the proximity information to model the
approach trajectory, whereas KeySens models the features only
on the information which becomes available once the user’s
finger touches the screen.

Zhang et al. [17] developed a method for detecting when
a user is using his left or right hand on a table-top multitouch
surface based on human anatomy, work area, finger orientation
and finger position. Unlike this work, their approach, which
focused on bigger touch surfaces (table tops) and made a
decision only on a single contact, did not use data from the
finger approach trajectory.

In addition to the finger’s approach trajectory, touch po-
sition, and tracking information, there is also information in
the finger posture, which describes the finger’s 3D orientation
in relation to the touch sensor [16]. Posture information could



be complimentary to this paper’s approach and could provide
additional features to be used by our algorithm.

III. DATA COLLECTION

A. Software and hardware

We used a Samsung Galaxy S4 mobile phone in our ex-
periments. This phone is equipped with a touch-screen sensor
by Synaptics and runs Android OS. Standard Android APIs
provide limited proximity information, only for UI elements
which are specifically registered to receive such events. Our
goal, however, is to monitor user touch patterns across various
applications during normal phone operation. To achieve this,
we wrote a data collection daemon which requires a modified
kernel based on CyanogenMod [9]. The daemon records all
events from the Linux input subsystem originating from the
touchscreen sensor. The kernel modification is required to force
the driver to send such events regardless of whether there
are any active screen UI components requesting proximity
information.

The driver reports touch information using a variant of
the Linux Multi-touch (MT) Protocol, specifically, Stateful
Protocol “B”. In addition to standard protocol events, an
additional event ABS MT ANGLE with code 0x03c is used
to report touch ellipse orientation (yaw angle).

When one or more fingers are detected either touching
the screen or in relatively close proximity, the information
summarized in Table I can be obtained for each finger.

Parameter Description

x,y Finger position

z Finger proximity (distance from the screen). 0 means touch-

ing.

a, b Length of touch ellipse major and minor axis. Defined when

z = 0
angle Yaw angle of touch ellipse. Defined when z = 0

TABLE I: Touch parameters reported by driver

B. Data collection from human subjects

A total of 14 participants1 (including the members of the
research team) were presented with the modified Samsung
Galaxy S4 and asked to follow a script containing different
tasks. The total time needed to complete the entire script was
approximately 15 minutes. The participants were asked to keep
the phone in the portrait (vertical) mode.

The script included typical operations performed by a
user on a regular basis. While the participant followed the
instructions in the script and performed the tasks on the
smartphone, the daemon running on the phone recorded the
raw touch protocol events of the participant.

C. Touch data interpretation

Raw protocol data was decoded to create the sequence of
touch measurements (Table I) constituting traces of the finger’s
motion before and after it touched the screen along with touch
ellipse size and orientation.

1Institutional Review Board approval was obtained.

Finger approach trajectories look like those shown in
Figure 1 and 2. The blue lines show the approach trajectory
of the finger, and the green arrows show the projection of the
finger velocity vector to the screen plane at the moment of
the touch. The trajectories for two different users are visibly
different. For example in Figure 1 the velocity vectors point
to the left; whereas in Figure 2 the velocity vectors seem to
point away from the center of the screen.

Empirically, we can estimate that a finger first registers
when it is approximately 5mm from the screen. However,
distance values reported by the sensor are in the 0 to 255
range, and it is unclear in what units the distance z from the
screen is reported.

For estimating intruder detection time we calculated the
average time duration between screen touches. The value is
0.406 touch events per second, or one touch in 2.46 seconds.
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Fig. 1: Finger approach trajectories for user “A”
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Fig. 2: Finger approach trajectories for user “B”

Since we wanted to analyze the trajectory of the finger
approach, for each contact we extracted two measurements:
one of the finger first touching the screen and the second one
of the finger position just before that. By this, we limited the
trajectory to just one measurement before the touch, essentially
a vector, as shown in Figure 3. For illustration purposes, touch
ellipse sizes were enlarged by a factor of 3.



Fig. 3: Touch Vectors

This gives a set of basic features for each touch, summa-
rized in Table II.

Features Description

x, y Touch coordinate

a, b Touch ellipse axis length

px, py Coordinates of projection of previous finger posi-

tion before touch

pz Distance to finger before touch

dt Time before touch and previously registered prox-

imity position

angle Touch yaw angle in radians

TABLE II: Basic Features

An illustration of these values is shown in Figure 4.
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Fig. 4: Illustration of basic features

IV. MODELING USER’S FINGER APPROACH

We developed several machine learning algorithms in order
to model the user’s “approach patterns.” These can be trained
online or offline. This work starts with offline training but
could be extended to online training to automatically adjust
the model for changing user touch patterns. The algorithms
are discussed below.

A. Features

In addition to basic features which we extracted from pro-
tocol data, we have experimented with different representations
and combinations of these features, for example conversion to
spherical coordinates, numerical differentiation, and numerical
integration. Table III summarizes all “synthetic” features we
considered in addition to the basic ones.

To understand why these features should be different for
different users, one can ponder their physical meanings. The

Features Description

dx, dy Drift px − x, py − y
vx, vy, vz Velocity dx/dt, dy/dt, pz/dt
θv, φv, rv Velocity (azimuthal angle, polar angle, radius)

θd, φd, rd Drift (azimuthal angle, polar angle, radius)

area Finger contact area (π ∗ a ∗ b)/4
abx, aby, abz Absement: dt ∗ dx/2, dt ∗ dy/2, dt ∗ pz/2

TABLE III: Synthetic Features

magnitude of the velocity can differ if two people touch the
screen very decisively or more slowly, while the direction of
the velocity can show the direction of the finger; approach. For
example, during data collection, we observed that some people
held the device with their right hand and touched the screen
with their left index finger, while others held the device with
their right hand but touched the screen using their right thumb
instead. Each of these two usage patterns can have different
signatures for these values. In addition, the area of the touch
ellipse can give some notion of the size of a user’s finger.

While absolute coordinates (x, y, px, py) could provide
some useful information, they are highly dependent on the
actions the user performs and might not be generalizable
especially when the training dataset is relatively small. In view
of this, we decided to avoid using absolute coordinates.

B. Classification

Classifying known “owner” vs other possibly unknown
users is known as an anomaly detection [8] problem. However
we started with the simpler problem where we distinguish
between the owner and other known users. That means that
we have training data for all users and can apply supervised
learning to build a discriminative classifier.

We will denote as ~x1, ..., ~xn the set of feature vectors
corresponding to touches made by the same user. We proceed
under the i.i.d assumption, that ~xi are mutually independent
and governed by the same statistical distribution Pr(X). We
will denote class Y = {+1,−1} of each feature vector as
y1, ..., yn. We will use the class label +1 for the owner and
−1 for any other user. The classification will be performed
by analyzing a single feature vector ~xi and deciding whether
it belongs to class +1 or −1. This is a standard two-class
classification problem.

We tried two different approaches to classification: an Ar-
tificial Neural Network (ANN) and Support Vector Machines
(SVM).

1) Artificial Neural Network: We used a feed-forward
neural network with two hidden layers with 50-75 and 30
neurons respectively. The output layer used a logistic sigmoid
activation function. We applied Principal Component Analysis
(PCA) to the input set and discarded low-variance principal
components, retaining 99.9% of the variance.

For ANN training, we split the data into 70% training
and 30% test sets. Since we had to assign only one user to
class +1 and all remaining users to class −1, the ratio of
data points belonging to each class was approximately 4:13.
In such a situation, it is insufficient to look at a simple metric
like miss rate to evaluate classifier performance, so we also



used precision, recall, and F1 score metrics. The resulting
performance of the ANN classifier is shown in Table IV.

Feature Set Miss
Rate

Precision Recall F1

angle, area,
nx, ny, nz

0.007 0.987 0.992 0.989

angle, area,
abx, aby, abz

0.007 0.989 0.991 0.990

angle, area,
rv , θv , φv

0.001 0.998 0.999 0.999

TABLE IV: ANN Results for different feature sets

2) Support Vector Machines: In addition to the ANN clas-
sifier, we also tried to implement an SVM classifier. We tried
various parameters and kernels including linear, polynomial,
and radial basis on different feature sets. Unfortunately, we
were not able to achieve good classification accuracy. The best
F1-score we saw was 0.67 (compared to 0.99965 by ANN on
the same data).

C. Sequential classification

In Section IV-B, we attempted to classify the user us-
ing a single feature vector. However, we are not bound to
classification of users based on a single touch. To improve
accuracy, we can treat x as a sequence of events from which
we can analyze several touches before making the decision.
We would like to classify using a minimal number of samples
which can provide enough information to make a decision
within predefined confidence bounds. The smaller the number
of samples required, the faster the system is able to detect an
unauthorized user.

The Sequential Probability Ratio Test (SPRT) was in-
troduced by Wald [15]. There were attempts to use it for
sequential classification, for example [14]. We will assume
that the given sequence of observations ~x1, ..., ~xn belongs to
an unknown class y. Our null hypothesis H0 would be that
y = +1, and our alternative hypothesis H1 would be that
y = −1. SPRT provides an optimal sequential decision strategy
Sn defined as:

Sn =







accept H0 Rn ≤ B

accept H1 Rn ≥ A

undecided B < Rn < A

(1)

Rn =
Pr(x1, ..., xn | y = −1)

Pr(x1, ..., xn | y = +1)
(2)

Constants A and B are chosen based on required rates of errors
of the first and second kinds α and β respectively. In practice,
A and B are difficult to calculate precisely, and the following
approximation for their values is suggested by Wald:

A′ =
1− β

α
B′ =

β

1− α

Wald shows that A′ and B′ defined this way provide upper
and lower bounds for Rn for given α and β. Moreover, he
shows that when A′ and B′ are used, the actual error rates α′

and β′ relate to the original α and β in the following way:

α′ + β′ ≤ α+ β

The SPRT strategy is applied by increasing the number of
observations n until a decision is reached.

With the i.i.d assumption, we can rewrite Equation (2) as:

Rn =

∏n
i=1 Pr(xi | y = −1)

∏n
j=1 Pr(xj | y = +1)

Applying the Bayes theorem in both numerator and denomi-
nator and simplifying we get:

Rn =

∏n
i=1 Pr(y = −1 | xi)

∏n
j=1 Pr(y = +1 | xj)

(

Pr(y = +1)

Pr(y = −1)

)n

(3)

It has been shown [2] that outputs of a simple 2-class feed-
forward ANN classifier can be interpreted as class probabil-
ities. Therefore, for each xi, the ANN classifier provides us
with Pr(y = +1 | xi) and Pr(y = +1 | xi). That means, we
can use these outputs in the first term of Equation (3). Since
we have two mutually exclusive classes, Equation (3) could be
further rewritten as:

Rn =

n
∏

i=1

(

1

Pr(y = +1 | xi)
− 1

)(

1

Pr(y = −1)
− 1

)n

(4)

For iterative computation, it is more convenient to work
with logarithms of Rn, A, and B. Our decision strategy from
Equations (1) and (3) could be written as:

Sn =







accept H0 logRn ≤ logB

accept H1 logRn ≥ logA

undecided logB < logRn < logA

logRn =
n
∑

i=1

log Pr(y = −1 | xi)

−

n
∑

i=1

log Pr(y = +1 | xi)

+ n log Pr(y = +1)− n log Pr(y = −1)

The only remaining unknowns are class priors Pr(y = −1) and
Pr(y = +1). It is difficult to estimate these from the training
data. However, we can use some prior knowledge to estimate
them for use as our model parameters. For example, in our
scenario of classifying the user as owner vs. intruder, these
priors describe our risk assessment or our belief of how likely
it is that the phone has been stolen. They could be set based on
the environment. For example, if we know the phone location
(using GPS or WiFi fingerprinting), we can argue that while it
is at the user’s home, it is less likely that the phone has been
stolen than if the phone is at some other location. We can also
use other factors, such as how recently the phone was unlocked
using the user’s secret password and last numbers called. The
phone is less likely stolen if the last number called comes from
the address book or has been frequently called previously. In
the worst case, if we know nothing about the environment, the
priors could be equally probable, and both may be set to 0.5.

The selection of priors has an effect on decision time,
which some people might consider counter-intuitive. Let us
denote the ratio or priors from Equation (3) as:

Rp =
Pr(y = +1)

Pr(y = −1)



Based on the value of Rp, we can distinguish three types of
priors. We will call them uniform when Rp = 1, safe when
Rp > 1, and risky otherwise (when Rp < 1).

If we simulate owner and intruder detection for all 3 types
of priors, the results will look something like that shown
in Figure 5. For simplicity, we have assumed that classifier
outputs Pr(y = +1 | xi) and Pr(y = −1 | xi) are constat
for all xi As we can see from the plot, risky priors speed
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Fig. 5: Effect of priors on decision time

up owner identification but slow down intruder detection. On
the other hand, safe priors speed up intruder detection but
delay owner identification. A common-sense explanation for
this effect is that the model, expecting a certain type of user,
is faster in reacting to evidence to the contrary. For example,
seeing suspicious behaviour which is not expected in a safe
environment triggers the alarm faster.

One way to look at this is by rewriting Equation 3 as
follows:

Rn =

∏n
i=1

Pr(y=−1|xi)
Pr(y=−1)

∏n
j=1

Pr(y=+1|xj)
Pr(y=+1)

This clearly shows that we normalize conditional probabilities
of each individual sample by dividing them by their respective
class priors.

The effect of priors and the desired error rate could be
illustrated by a join probability density function of decision
time (proportional to n) and error rate shown in Figures 6
and 7 sampled from the experiments we performed. For
simplicity here, we set both SPRT parameters α and β to the
same value error rate.

D. Dominant hand detection

An interesting side result of our analysis of proximity
information is that we can easily distinguish between left and
right handed users using their dominant hand. This can be done
based on a sign of the dx feature. As a left handed user’s
finger usually approaches from the left side before touching
the screen, such users’ dx will have a negative sign. This
correlation could be seen in Figure 8 which depicts the PDF of
dx values for left handed users (shown with dashed red lines)
and for right handed users (shown with solid black lines).

The sign of the sample mean of dx values from multiple
samples provides a very good indicator of whether the user is
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Fig. 6: y = −1,Pr(y = −1) = 0.9. PDF showing the effect
of desired error rate and decision time.
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left or right handed. For all our subjects we can see a 100%
correlation between the d̄x sign and the dominant hand.

Since dominant hand detection was not the primary topic
of our study, the results presented above are preliminary.
Additional research is required to provide more rigorous
methodology.
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V. EXPERIMENTAL RESULTS

Figure 9 shows a simulated scenario of user change. The
dataset was composed from three segments of equal lengths.
The data in the first and the third segments belongs to the user
with class y = −1, and the data in the second belongs to the
user with class y = +1. The purpose of this experiment was to
investigate how fast our algorithm detects when the phone is
transferred to a different user (simulated phone loss followed
by recovery).

Green circles show probabilities as calculated by ANN for
10% of the individual samples. The black line shows the clas-
sification according to our algorithm. In this experiment, the
following parameters were used2: Pr(y = +1) = 0.5,Pr(y =
+1) = 0.5, α = 10−20, and β = 10−20. The purple, dotted
line shows the probability of the class +1. As we can see, the
algorithm performed very well and correctly identified users.
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Fig. 9: User change detection

The time required to make the classification decision is
shown in Figure 9. As we can see, on average, it takes slightly
less time to make decisions for class −1 and more for class
+1. This could be attributed to the disproportionate amount of
data per class used to train the ANN classifier.

Overall system performance in making a decision is shown
in Figure 10. It shows a histogram of the number of touches
a user needs to perform before he or she is classified as an
owner or an intruder. This was calculated for users across
both classes. On average, a decision takes 5 touches or 12.6
seconds. The maximum duration was 20 touches or 49 seconds.

2These parameters exceed requirements of The European standard for
access-control systems EN-50133-1 which mandates a false-alarm rate of less
than 1%, with a miss rate of no more than 0.001% [8]

We find this decision time satisfactory for practical purposes,
as an intruder could be detected in less than a minute which
is insufficient time do much damage to the stolen phone.
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