Managing XML Documents Versions and
Upgrades with XSLT

Vadim Zaliva, lord@crocodile.org

2001

Abstract

This paper describes mechanism for versioning and upgrding XML
configuration files used in FWBuilder project.

1 Introduction

While most software programs should include configuration data, no common
standard for presentation of such data exists. Windows programmers tend to
use the registry, while UNIX programmers prefer plain text configuration files
in either the /etc directory or a “dot-program name” in the user home directory.
Such files contain a variety of data formats. The recent surge of XML popularity
may make it the perfect candidate for a unified language to present configuration
data.

Besides syntax variety, another major challenge with configuration files is
how to upgrade software without losing data. Common methods used by soft-
ware developers include:

1. Do nothing. It is the user’s responsibility to back up all data before an
upgrade and to convert it to the new format once the upgrade is completed.

2. Include a backup. The upgrade procedure backs up old files before up-
grading the software. The user must then merge the changed format back
to the old files.

3. Make new formats backward-compatible. The developer makes an effort
to keep new data formats backward-compatible so old files can be loaded
into newer versions of the software. The new software is smart enough to
fill in missing fields in old data.

4. Provide an upgrade procedure. The software recognizes and converts older
files to the new format.

From the user’s point of view, this last approach is, of course, the most
desirable. Unfortunately, however, it can cause great pain for the developer.



—

Supporting all data formats throughout the life of a program entails considerable
effort.

During work on Firewall Builder (see http://www.fwbuilder.org/), we de-
veloped an approach which simplifies the use of XML for versioning and main-
tenance of configuration files, described in detail below.

2 Preliminaries

Let’s assume that your program works with several XML files, such as user pref-
erences, GUI resources, and data. It is a good practice to use DTDs (document
type definitions) to specify the format of each file type. While our approach
does not require documents to have DTDs (which is allowed by the XML speci-
fication for well-formed documents), files with the same format should have the
same document type.

Next, you need to decide on a versioning schema. While you may create
a separate version sequence for each file in addition to a version number for
the software itself, sometimes it is more convenient to assume that the data
format version number is the same as that of the software. Our procedure
allows either approach. Whatever versioning scheme you use, you must ensure
that the version numbers can be compared to determine which is newer. A
common software versioning scheme employing a series of digits separated by
dots is supported in our library. If your scheme allows nondigits in version
numbers, you will have to customize our code by writing a version-comparison
function.

Let us look at an XML file fragment:

<?xml version="1.0" encoding="utf—8"7>
<!DOCTYPE FWBuilderPreferences SYSTEM ” fwbuilder_-preferences .dtd”>
<FWBuilderPreferences version="0.9.77">

Line 1 indicates that this is an XML file conforming to the XML version 1.0
standard, with UTF-8 text encoding.

Line 2 declares that this document is of type FWBuilderPreferences. Its
DTD is fwbuilder_preferences.dtd

Line 3 opens the root element, whose name must match the document type
declared in line 2. Here we use the attribute version to specify the data format
version used in this document. In fact, this attribute is part of the user data.
This is the only common part of user data that must be present in all data files.
Without it, it would be impossible to distinguish one version from another. If
you decide to use our procedure on existing project files that do not have this
attribute, our code assumes that a missing version attribute corresponds to a
certain initial version number, for example 0.0.0.

To do the actual data conversion we use XSLT, a very convenient technology
that allows a developer to write a style sheet to transform one XML document
to another. The style sheet itself is an XML document.



http://www.fwbuilder.org/

3 Procedure

We will now assume the user has a document with a version 1.0 data format. A
software upgrade is released using a version 1.1 data format. The new software
includes an XSLT transformation that upgrades the format from 1.0 to 1.1.
When version 1.2 comes out, it is desirable to be able to convert both 1.0
and 1.1 to the new format. This could be achieved either by writing a direct
transformation from 1.0 to 1.2 or by using 1.1 as a transitional format (1.0 —
1.1 — 1.2). The best approach depends on your application. Our procedure
allows either to be used.

For each document type, the software vendor ships a series of XSLT style
sheets enabling transformations among different version numbers. These are
identified by the original version number, since the transformation procedure
does not know in advance what will be the resulting version number produced
by the transformation, except that it will be greater than or equal to the current
one.

Our basic upgrade procedure is as follows:

1. Load the original data file.

2. Check the document format version number. If it is the same as the new
one, we are done. If it is greater than the new one, display an error
message indicating that the format is from a future version. Otherwise
proceed to next step.

3. If the document format version number is less than the new one, locate
and run the appropriate upgrade transformation for this document type,
which is executed in memory.

4. If the resulting document format version number is still less than the new
one, repeat step 3. If it is greater, it indicates a programming error during
the transformation.

5. If the converted file is now in the desired format and this procedure is
used in interactive mode, display a message indicating the data file has
been converted and suggesting that the user save it.

It is important that each transformation update the version attribute to
reflect the new data format version number.

Each transformation updates the data format to a newer version than the
current one, but it does not have to be next one or the latest one since a
transformation could skip a version or versions. Figure 3 shows an example
in which format version 1.2 removes some attributes but 1.3 restores them to
the way they were in 1.1. Thus, when upgrading from 1.1 to 1.3, the attribute
values should be preserved, while when upgrading from 1.2 to 1.3 attribute
values will have to be reset to the original defaults. This scenario grants writing
two separate upgrade transformations for 1.1 — 1.3 and 1.2 — 1.3.



i

Typically, an incremental upgrade will be used. The software developer for
each version needs to write just one transformation that upgrades from the
previous one. This is enough to support all older format versions, provided you
ship all transformations accumulated during previous releases.

The procedure can be interactive or noninteractive. In the noninteractive
approach, you can use software to upgrade data files internally, shielding the user
completely. When employing the interactive approach, in which when the user
is led through the process of upgrading the data files (for example, instructing
the user to choose the Load command from the File menu), you may wish to
warn the user that files in the older format will be converted to the new format.

However, if a file is opened in read-only mode, there is no need to save the
results of an upgrade transformation. Since all upgrades can be performed in
memory without modifying the original file, this is an ideal approach for allowing
a user to try a new software version with the option of returning to the previous
version.

4 Implementation

The procedure described above was used in Firewall Builder. While it happens
to have been written in C++, it could have been written in other languages as
well, Java for instance. Firewall Builder uses libxzslt and libxml libraries from
the GNOME project, and the upgrade procedure is implemented as part of the
projects API library, libfwbuilder.

The program includes several XML files. We used the upgrade procedure
described earlier to update user preferences, data files, and resource files. All
upgrade transformations are shipped in one directory, in which there are subdi-
rectories for each version number. In each subdirectory there is one transforma-
tion file for each document type. For example, /usr/share/fwbuilder/migration/
contains these directories:

e 0.10.0/
e 0.10.1/



© 00O U W=

NE-NC ISR

e 0.8.7/
e 0.9.0/
e 0.9.1/
e 0.9.2/
e 0.9.3/
e 0.9.4/
e 0.9.5/

Directory 0.9.2, for example, might contain the file FWBuilderPreferences.xslt,
an XSLT style sheet that converts XML documents of document type FW-
BuilderPreferences (a user preferences file) from version 0.9.2 to version 0.9.3
by adding an Autosave child element under the Ul element:

<xslistylesheet version="1.0"
xmlns:xsl="http://www.w3.org/1999/XSL/Transform”
>
<xsl:output method="xml” version="1.0"
doctype—system="fwbuilder_preferences.dtd” indent="yes” encoding="utf—8" />

<xsl:template match="FWDBuilderPreferences”>
<FWBuilderPreferences version="0.9.3">
<xsl:apply—templates />
</FWBuilderPreferences>
</xslitemplate>

<xsl:template match="UI">
<uUI>
<Autosave>false</Autosave>
<xsl:apply—templates />
</UI>
</xsl:template>
<xsl:template match="%">
<xslicopy—of select="."/>
</xsl:template>

</xsl:stylesheet>

In our project we used a DTD to define XML file structure. Unfortunately,
since DTD files themselves are not in XML format, they cannot be updated
using this procedure (it will be possible in case of XML Schema ). Because of
this, we ship only the DTD for the most recent version. When we are loading a
data file for the first time, we switch off DTD validation in the parser to allow
loading files from older versions for which there is no DTD. Once it is loaded in
memory, we perform the upgrade procedure. After the upgrade is complete and
we have a file with the desired format version number, we revalidate it using the
current DTD. This ensures that transformation results conform to the current
DTD.

Most of the internal workings of the upgrade facility is hidden from the
programmer. When there is a need to load the XML file, the programmer calls
the following method:

xmlDocPtr XMLTools:: loadFile (const std::string &file_name ,
const std::string &type-name,
const std::string &dtd-file ,
const UpgradePredicate xupgrade,
const std::string &template_dir ,
const std::string &current_version
) throw (FWException);




This method takes care of all data loading, format conversion, and validation.
If something goes wrong, an exception will be thrown . If it succeeds, the
program returns a parsed document in current format. Let’s take a brief look
at the parameters:

file_name Name of the file to be loaded. It must exist and be readable.

type_name Expected document type. While loading, it will be compared with
the document type within the document and an exception will be thrown
if it does not match.

dtd_file DTD file name (relative to the template_dir parameter).

upgrade User can pass here a pointer to an instance of the class, which will be
called to determine if the upgraded file should be saved in place of the old
one after conversion. This predicate could be interactive or noninteractive.
If it is interactive, it could (as it does in our case) generate a dialog box
asking the user to make the decision about replacing the old file with the
new.

template_dir Path to the directory where DTDs and upgrade transformations
are stored (for example, /usr/share/fwbuilder/). Transformations should
be located in the migration/ sub-directory. DTD files should be located
in the top directory.

current_version Expected current format version. For example “1.77.

You can download and view the complete implementation of the upgrade
procedure described in this article in the source code of the Firewall Builder
project.

References

[1] T. Bray, J. Paoli, C.M. Sperberg-McQueen, et al. Extensible Markup Lan-
guage (XML). World Wide Web Consortium Recommendation REC-zml-
19980210. http://www. w3. org/TR/1998/REC-zml-19980210.

[2] J. Clark et al. XSL Transformations (XSLT) Version 1.0. W8C Recommen-
dation, 16(11), 1999.

[3] Firewall builder project. http://www.fwbuilder.org/.

[4] libxml’” and ’libxslt’ xml and xslt libraries for gnome project.
http://www.xmlsoft.org/.



	Introduction
	Preliminaries
	Procedure
	Implementation

