
Formal Mechanised Semantics of CHERI C:
Capabilities, Undefined Behaviour, and Provenance

Vadim Zaliva

University of Cambridge

Cambridge, UK

Vadim.Zaliva@cl.cam.ac.uk

Kayvan Memarian

University of Cambridge

Cambridge, UK

Kayvan.Memarian@cl.cam.ac.uk

Ricardo Almeida

University of Edinburgh

Edinburgh, UK

Ricardo.Almeida@ed.ac.uk

Jessica Clarke

University of Cambridge

Cambridge, UK

Jessica.Clarke@cl.cam.ac.uk

Brooks Davis

SRI International

Menlo Park, CA, USA

Brooks.Davis@sri.com

Alexander Richardson

University of Cambridge

Cambridge, UK

Alexander.Richardson@cl.cam.ac.uk

David Chisnall

Microsoft

Cambridge, UK

David.Chisnall@microsoft.com

Brian Campbell

University of Edinburgh

Edinburgh, UK

Brian.Campbell@ed.ac.uk

Ian Stark

University of Edinburgh

Edinburgh, UK

Ian.Stark@ed.ac.uk

Robert N. M. Watson

University of Cambridge

Cambridge, UK

Robert.Watson@cl.cam.ac.uk

Peter Sewell

University of Cambridge

Cambridge, UK

Peter.Sewell@cl.cam.ac.uk

Abstract
Memory safety issues are a persistent source of security

vulnerabilities, with conventional architectures and the C

codebase chronically prone to exploitable errors. The CHERI

research project has shown how one can provide radically im-

proved security for that existing codebase with minimal mod-

ification, using unforgeable hardware capabilities in place of

machine-word pointers in CHERI dialects of C, implemented

as adaptions of Clang/LLVM and GCC. CHERI was first pro-

totyped as extensions of MIPS and RISC-V; it is currently

being evaluated by Arm and others with the ArmMorello ex-

perimental architecture, processor, and platform, to explore

its potential for mass-market adoption, and by Microsoft in

their CHERIoT design for embedded cores.

There is thus considerable practical experience with

CHERI C implementation and use, but exactly what CHERI

C’s semantics is (or should be) remains an open question.

In this paper, we present the first attempt to rigorously and

comprehensively define CHERI C semantics, discuss key se-

mantics design questions relating to capabilities, provenance,

Permission to make digital or hard copies of part or all of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page. Copyrights for third-

party components of this work must be honored. For all other uses, contact

the owner/author(s).

ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA
© 2024 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-0372-0/24/04.

https://doi.org/10.1145/3617232.3624859

and undefined behaviour, and clarify them with semantics in

multiple complementary forms: in prose, as an executable se-

mantics adapting the Cerberus C semantics, and mechanised

in Coq.

This establishes a solid foundation for CHERI C, for those

porting code to it, for compiler implementers, and for future

semantics and verification.

ACM Reference Format:
Vadim Zaliva, Kayvan Memarian, Ricardo Almeida, Jessica Clarke,

Brooks Davis, Alexander Richardson, David Chisnall, Brian Camp-

bell, Ian Stark, Robert N. M. Watson, and Peter Sewell. 2024. For-

mal Mechanised Semantics of CHERI C: Capabilities, Undefined

Behaviour, and Provenance. In 29th ACM International Confer-
ence on Architectural Support for Programming Languages and
Operating Systems, Volume 1 (ASPLOS ’24), April 27-May 1, 2024,
La Jolla, CA, USA. ACM, New York, NY, USA, 16 pages. https:
//doi.org/10.1145/3617232.3624859

1 Introduction
Memory safety bugs continue to be a major source of se-

curity vulnerabilities, despite much research on software

bug-finding and mitigation approaches. For example, they

are responsible for most of those addressed by Microsoft

security updates or impacting Chromium [19, 29]. They are

a particular concern for the large codebases in C and C++

that comprise the infrastructure that we all depend on. Al-

ternative memory-safe languages offer promise, but these

C/C++ codebases will clearly be an ongoing challenge for

the foreseeable future.

https://orcid.org/0000-0002-9145-3288
https://orcid.org/0000-0003-3723-636X
https://orcid.org/0009-0000-1667-1683
https://orcid.org/0000-0001-8157-5567
https://orcid.org/0009-0006-6256-0419
https://orcid.org/0000-0002-6372-217X
https://orcid.org/0000-0001-6060-0153
https://orcid.org/0000-0001-6941-5034
https://orcid.org/0000-0001-6941-5034
https://orcid.org/0000-0001-8139-8783
https://orcid.org/0000-0001-9352-1013
https://doi.org/10.1145/3617232.3624859
https://doi.org/10.1145/3617232.3624859
https://doi.org/10.1145/3617232.3624859


ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA
Vadim Zaliva, Kayvan Memarian, Ricardo Almeida, Jessica Clarke, Brooks Davis, Alexander Richardson, David Chisnall, Brian Campbell, Ian Stark, Robert N.

M. Watson, and Peter Sewell

The CHERI project [44], developed by the University of

Cambridge and SRI International since 2010, offers a promis-

ing hardware-based approach. CHERI extends conventional

hardware Instruction-Set Architectures (ISAs) to enable sup-

port for fine-grained memory protection and for scalable

software compartmentalisation, with hardware-supported

capabilities. In a 64-bit CHERI ISA, instead of using simple

64-bit machine-word virtual-address pointer values to ac-

cess memory, restricted only by the memory management

unit (MMU), one can use 128+1-bit capabilities that encode

a virtual address together with the bounds of the memory it

can access. Encoding these within the capability enables a

fast access-time check, faulting if there is a safety violation.

The ISA design ensures that capabilities cannot be forged,

i.e, that normal code execution can shrink capabilities but

never grow them, and there are additional “sealed-capability”

features for secure encapsulation.

The initial academic work developed CHERI-MIPS and

CHERI-RISC-V architecture extensions, along with FPGA

processor implementations and system software (including

adaptions of Clang/LLVM, linkers, debuggers, FreeRTOS,

FreeBSD, andWebKit). Some initial design work on potential

CHERI-x86 designs is in progress [1]. Arm, partly supported

by the £190m UKRI Digital Security by Design (DSbD) pro-

gramme [41], have now developed the Morello architecture,

processor, and development board, extending the Armv8-

A architecture and high-performance Neoverse N1 proces-

sor, to enable industrial evaluation that may support mass-

market adoption in mobile or server cores [4, 5]. Meanwhile,

the Microsoft CHERIoT project has developed the epony-

mous architecture, reference hardware design, and RTOS

and software stack for an extension of 32-bit RISC-V with

CHERI-based protection for small embedded cores [3].

A key design goal for CHERI is to provide radically im-

proved security for those critical existing C codebases with

minimal modification. It does so with a dialect of C, imple-

mented initially as modifications to Clang/LLVM, and now

also as a GCC port by Arm. The CHERI architectural mecha-

nisms can be used by language implementations and systems

software in various ways to provide improved security, but

the basic idea for fine-grained memory protection is to im-

plement C pointer types with machine capabilities instead

of machine words, so that pointer integrity and memory

accesses are checked by the hardware. For simple code, re-

compilation of the unmodified existing code with the CHERI

C compiler will do this, while more exotic code, for example

code that manipulates the bit-representations of pointers,

may need some source adaptation.

A 2019 analysis [29] suggested that 30–70% of the vulner-

abilities reported to the Microsoft Security Response Cen-

ter (MSRC) would have been deterministically mitigated by

CHERI memory-safety, and porting the FreeBSD kernel and

userspace to CHERI required changes only to 0.18% and

0.04% LoC respectively. Analysis of an open-source desktop

stack [42] estimated a 73.8% vulnerability mitigation rate

through a combination of memory protection and software

compartmentalisation requiring a 0.026% LoC change.

All this raises the question that we address in this pa-

per: what is CHERI C, exactly? This is important from

several perspectives: those porting legacy C code to CHERI

C, or writing new code, need to know what is permitted;

those implementing CHERI C compilers (notably the Clang

and GCC extensions) need a common understanding, lest

those diverge from each other and from the programmer’s

model; all these need to understand what is common and

what varies across CHERI C implementations above distinct

CHERI hardware architectures, so that CHERI C code can be

portable across architectures; future semantics and verifica-

tion for CHERI C needs a basis for its work; and all involved

need an understanding of what security properties CHERI C

enforces, and what vulnerabilities it mitigates.

We make the following contributions:

• Discussion of the design issues that arise in the design

of CHERI C and its semantics, including the subtle

interactions between capabilities, undefined behaviour,

and pointer provenance, illustrated with a test suite of

examples (§3).

• An executable mechanised semantics of CHERI C,

reifying the above as an extension of the Cerberus

ISO C semantics [27, 28] and the PNVI-ae-udi mem-

ory object model supported by the ISO C standards

committee [18, 28] (§4).

• The CHERI C memory object model is mechanised

within Coq, with the extracted code used in the exe-

cutable semantics (§4.3).

• A prose definition of CHERI C (published as a separate

Technical Report [49]).

• Validation and experimental comparison (§5).

The several different versions of the semantics serve different

purposes: the prose version should be widely accessible; the

extension of Cerberus gives a semantics that is executable

as a test oracle, to compute the allowed behaviour of small

and modest-sized tests and programs, and helped us check

that we have considered all interactions of CHERI and ISO C

features; and the Coq formalisation of that helped nail down

all the details and provides a basis for latermechanised proofs

(§7).

Without all this, CHERI C would remain merely “defined”

by its implementations, leaving many important aspects un-

clear, and with no solid basis for future discussion.

We begin with background on CHERI hardware capabili-

ties, C undefined behaviour, and pointer provenance (§2) and

conclude with discussion of related and future work (§6,7).

Our semantics and examples will be available open-source.



Formal Mechanised Semantics of CHERI C:
Capabilities, Undefined Behaviour, and Provenance ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA

063

perms[17:2] eg otype[14:0] bounds[86:56]

address[63:0]

Figure 1. Bit-field layout of Morello capability

2 Background
2.1 CHERI Architecture
CHERI-enabled architectures add new hardware support for

capabilities in registers and in memory. Capabilities have

larger bit-width than architecture addresses, and have an

additional out-of-band tag bit, which is not independently

addressable. A capability includes an address together with

bounds, permissions, and other metadata. The details vary

between architectures, and CHERI C has to accommodate

this variation, but for concreteness we briefly describe the

Morello version (CHERI 64-bit Arm-A) [4, 5]. Here capabili-

ties are 128+1 bits. The lower 64 bits in most cases represent

a virtual address, while the upper 64 bits encode bounds,

permissions, and other metadata.

A sophisticated compression scheme allows a capability

to include 64-bit lower and upper bounds, encoded into 87

bits in total, with 56 of those shared with the address field [5,

§2.5.1],[47]. Small regions can be described precisely, with an

arbitrary size in bytes, while for larger regions, only certain

combinations of bounds and size are representable (though

all addresses are representable for some base and size). The

one-bit tag provides integrity protection: it is preserved only

by legitimate operations on capabilities and cleared by any

others (e.g. by overwriting individual bytes). A capability

can only be used as such, e.g. for a dereference, if its tag is set.

The permission bits control whether a capability can be used

for loading or storing non-capability data, loading or storing

capabilities, and fetching instructions, among other things.

Capabilities can also be sealed, making them immutable and

unusable for anything but branching to them; this allows

controlled transitions between different security domains.

Sealing (or unsealing) a capability requires an authority capa-

bility with the Seal (or Unseal) permission. Some variations

of this are indexed by an object type otype. Global g and

executive e bits restrict the locations where a capability can

be stored and the banking of certain system registers.

Morello extends the Armv8-A general-purpose integer reg-

ister file, and some control and status registers, from 64 bits

to 128+1 bits. Memory is extended with a tag bit for each 128-

bit sized and aligned unit of DRAM. The Program Counter

(PC) is extended to become a Program-Counter Capability
(PCC), constraining instruction fetch as well as PC-relative

loads (e.g., of global variables). A new Default Data Capa-
bility (DDC) register controls memory accesses by legacy

(non-capability) instructions, for legacy code using integer

pointers. Morello extends Armv8-A with new instructions

and modifies existing instructions to use and respect capa-

bilities.

CHERI architectures introduce new detected errors,

e.g. when an instruction tries to access memory outside

the bounds of the capability used for the access, or with

an untagged capability; the exact handling of these is ISA-

specific. For example, in Morello such an access triggers a

synchronous data abort exception. In other cases, e.g. when an

instruction attempts to construct a non-representable capa-

bility, hardware will clear the tag of the resulting capability,

to protect integrity.

2.2 C Undefined Behaviour
ISO C relies crucially on the notion of undefined behaviour
(UB), to make it possible to define the semantics of a memory-

unsafe language (in which the possible effects of a wild write

are hard to bound without massively over-constraining im-

plementations), and to enable high-performance optimising

implementations on diverse platforms. In the ISO C abstract

machine, out-of-bounds memory accesses have undefined be-

haviour, as do signed integer overflows, data races, and many

other things. Any program for which there exists an abstract

machine executionwhich has undefined behaviour is deemed

to have undefined behaviour as a whole: programmers are

required to avoid this, and compiler implementations are

free to behave in any way for such programs. Importantly,

UB of programs is not a temporal notion: while it is identi-

fied in the ISO abstract machine at specific execution points,

it is not the case that a correct compiler is guaranteed to

behave according to the abstract machine until such points,

but rather that the compiled whole program can behave ar-

bitrarily. This is forced by the desire to allow optimisations

that move code around without a compile-time check or

proof that it is UB-free: the compiler is allowed to assume

that the preconditions for such optimisations hold, and the

programmer is obliged to ensure that they do, otherwise

the standard gives no guarantees about the whole-program

behaviour.

2.3 C Memory Object Models and Pointer
Provenance

In conventional C implementations, pointers are represented

at run-time with simple machine-word integers, and the lan-

guage exposes this representation to programmers (e.g. via

pointer/integer casts, representation-byte accesses, and type

punning); this expressiveness is important for low-level sys-

tems code. However, compile-time optimisations rely on alias

analysis, e.g. to determine that two pointers cannot alias

and hence accesses via them can be reordered. In particular,

compile-time analysis commonly tracks the original alloca-

tion, or provenance, of pointer values, and two pointer values
that can be statically determine to have different provenance

are assumed to not alias. This has been discussed in the ISO



ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA
Vadim Zaliva, Kayvan Memarian, Ricardo Almeida, Jessica Clarke, Brooks Davis, Alexander Richardson, David Chisnall, Brian Campbell, Ian Stark, Robert N.

M. Watson, and Peter Sewell

WG14 C standard since 2004 [46], and recent work has pro-

posed a provenance semantics “PNVI-ae-udi” that is the basis

for an in-progress ISO Technical Specification [18, 28]. In that

semantics, the C abstract machine associates a provenance,

which is either an allocation unique ID or empty, with every

pointer value. Normal operations on pointers simply prop-

agate the provenance, and memory accesses via a pointer

check that the address is within the bounds of the original

allocation identified by the provenance, with undefined be-

haviour otherwise. Of course, while this C abstract machine

uses provenance at runtime, conventional implementations

still do not and should not. Instead, this licences various

existing compiler optimisations that rely on compile-time

provenance analysis, by deeming certain programs UB. In

PNVI-ae-udi, pointers carry provenance, but integers do not.

If a pointer is cast to an integer (or its representation is oth-

erwise examined), the allocation identified by its provenance

is marked exposed. On a cast from integer to pointer, if the

integer is within the range of some exposed allocation, the

appropriate provenance is (in the semantics) attached to the

resulting pointer value.

3 CHERI C Semantics Design Questions
CHERI C has been implemented as an adaption of the

Clang/LLVM C compiler [23, 36, 45], and, in progress, as

an adaption of GCC [6]. The details of these implementa-

tions are beyond the scope of this paper, but the basic idea

is to represent all C source-language pointers with machine

capabilities, instead of machine words. Pointer arithmetic

is implemented as arithmetic over these capabilities, and

thus the hardware checks that all accesses are within their

bounds. For allocations of local variables whose address is

taken, the compiler introduces code to construct a capabil-

ity with the correctly narrowed bounds (derived from the

stack-pointer capability), and for globals, thread-local vari-

ables, function pointers, and malloc’d allocations, the runtime

linker and the allocator similarly construct capabilities with

the appropriate bounds. The language provides new intrin-

sics for explicit manipulation of capabilities, e.g. to inspect

their fields or further narrow their bounds, but these are not

needed for porting straightforward C code. In addition to

source-language pointers, CHERI C implementations also

use capabilities to represent internal runtime pointers: the

program counter, jump addresses, stack pointer, return ad-

dresses, and global-offset-table (GOT) machinery.

The design of CHERI C has to reconcile three major and

at times conflicting objectives:

1. Existing C programmers should be able to port existing

C codebases to CHERI C with little effort.

2. Existing compiler infrastructure and optimisations

should require only limited changes, to maintain per-

formance of the generated code and to make the re-

quired compiler engineering effort feasible.

3. Memory-safety errors which would lead to exploitable

vulnerabilities should be deterministically mitigated

wherever possible. In particular, CHERI C aims to pro-

vide a substantial level of spatial safety, ensuring that

“pointers may be used only to access memory within

bounds of their associated allocation” [45]. Temporal
safety is not universally guaranteed by default across

all existing CHERI architectures. Some already provide

temporal safety guarantees [3] while for others it is a

topic of active research [17].

Moreover, CHERI C needs a well-defined and comprehen-

sible semantics, for all involved. To understand what this

should be, we need to weigh considerations from the CHERI

C implementation design, CHERI C code-porting experience,

ISO specification, and advances in C semantics. Ideally we

would have a semantics that makes precise the security guar-

antees that CHERI C provides. Unfortunately, as we shall

see in the next subsections, the interactions with C optimisa-

tions and undefined behaviour appear to make it impossible

to define those with a source-language semantics. Instead,

we give what we call the positive semantics, to clearly define

what programmers can rely on, and what they are obliged to

ensure, for well-defined CHERI C code. This is useful in itself,

and the discussion and examples also serve to highlight the

need for further work on what security guarantees CHERI

C provides.

3.1 Out-of-bounds memory access and undefined
behaviour

1 void f(int *p, int i) {

2 int *q = p + i;

3 *q = 42;

4 }

5 int main(void) {

6 int x=0, y=0;

7 f(&x, 1);

8 return y;

9 }

Consider first the buggy C

program on the right, which

passes the address of local

variable x into f, constructs

a “one-past” out-of-bounds

pointer at line 2 and writes

to it in line 3. In ISO C the

pointer construction is legal,

but the access is not, and the

program has undefined be-

haviour. Conventional C implementations will not flag this

error, either at compile time (it is obviously undecidable to

statically detect all such errors, although compilers can warn

in some simple cases), or at run time. They will represent

pointers with machine-word virtual addresses, and generate

code that computes the address of the stack location of x plus

sizeof(int) and write to whatever is there – which in some

cases will be a security problem. Sanitisers can detect some

(though not all) such errors at run time, by inserting software

instrumentation, but at a substantial performance cost. In

CHERI C, on the other hand, C source-language pointers are

represented with hardware capabilities. The (non-optimised)

generated code for &x constructs a capability with bounds

spanning exactly the footprint of the stack slot used for x,



Formal Mechanised Semantics of CHERI C:
Capabilities, Undefined Behaviour, and Provenance ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA

and the address of this slot. At Line 2 the capability q has

that address plus sizeof(int), but unchanged bounds. Then

at the Line 3 access, the hardware check that the virtual

address footprint of the access is within that of the bounds

fails, and a hardware exception and then a signal are raised

– the program will fail-stop safely, preventing exploitation

of the bug.

This suggests what would be a straightforward and desir-

able semantics for CHERI C: that any such memory-access

UB is instead guaranteed to trap. With some attention to

other UB cases, that could provide strong general security

guarantees for race-free programs. Unfortunately, the re-

ality is more complex. Standard C-compiler optimisations

can eliminate the call to f entirely – at -O2 the current

Clang/LLVM-based CHERI C compiler compiles this code to

just return zero – and whether they do or not can depend

in subtle and hard-to-predict ways on the rest of the code.

For example, if &x is assigned to a global, then at -O2 the

inlined f survives and performs the doomed write (and, in

a larger example, who-knows-what after that), while at -O3

the doomed write is again eliminated.

1 char g(int i) {

2 char a[1];

3 h(a);

4 return a[i];//UB if i!=0

5 }

Another instructive ex-

ample is g on the right.

Here, the compiler will

assume the absence of

UB, reason that the access

a[i] must be in-bounds,

and compile it to a[0], removing the potential capability

exception for a[1]. It is then hard for a source-language se-

mantics to bound the behaviour of the rest of the program, as

it does not correspond to any execution path of the (CHERI)

C abstract machine.

To make this range of implementation behaviour legal,

our formal semantics has to retain the ISO C notion of unde-

fined behaviour, leave implementations unconstrained for

programs that are UB, and deem the first program to be UB,

and likewise for any program that calls g(1) (with a terminat-

ing h). Such a semantics cannot capture the intended security

properties that CHERI C aims to provide. CHERI C clearly

deterministically mitigates many otherwise-exploitable se-

curity flaws, but undefined behaviour and compiler optimi-

sations make it unclear what precise security properties it

provides in general. Further work is needed to see whether

the effects of those optimisations and undefined behaviours

can be bounded more tightly at an acceptable performance

cost.

3.2 Out-of-bounds pointer construction and
representability

In ISO C, it is undefined behaviour to use pointer arithmetic

to construct a pointer value that is either below or more than

one byte past the footprint of the object [21, 6.5.6p8]. The one-

past case has to be allowed to support the standard C idiom of

iterating across an array, but in real-world C it is not uncom-

mon for code to construct pointer values that are below or

1 int main(void) {

2 int x[2];

3 int *p = &x[0];

4 int *q = p + 100001;

5 q = q - 100000;

6 *q = 1;

7 }

more than one-past the ob-

ject [12, 28], e.g. for decreas-

ing loops, or transiently in

more complex arithmetic, as on

the right. In CHERI architec-

tures, the capability compres-

sion schemes [5, 47] cannot ex-

press arbitrary combinations

of address, size, and bounds, but, to support porting such

software to CHERI, they have been designed to allow com-

binations for which the address is somewhat outside the

bounds. Exactly what combinations are representable is a

complex property of the encoding scheme, but they have

been designed to allow at least some ranges below and above

the object. If a capability arithmetic operation would con-

struct a non-representable value, the resulting address will

be as expected, but the tag will be cleared and the bounds

may have been changed (another possibility explored earlier

in CHERI was to have the hardware trap on the attempt

to construct such a capability, but that turns out to be less

useful).

For CHERI C, we have to decide whether (a) to follow

ISO, with UB for any pointer construction beyond one-past,

(b) allow arbitrary virtual address values within the ranges

allowed by all CHERI architectures (or some safe approxima-

tion thereto), or (c) allow whatever the underlying architec-

ture makes representable. Moreover, for (b) and (c), we would

have to decide whether to deem it UB to go outside those, or

merely to make the resulting bounds to be unspecified and

the resulting tag be unspecified or cleared.

Conventional C compiler optimisations impact this in two

ways. First, despite common coding practices, C compilers

do sometimes reason from the fact that in ISO C array indices

must be in bounds, as in function g in the earlier example.

It would be hard and probably performance-reducing to re-

move that from implementations, and problematic to bound

the resulting behaviour for programs that trigger it if they

were not UB. Second, optimisation can remove transient out-

of-bounds construction, e.g. by collapsing (p+100001)-100000

above to just the ISO-legal p+1, so one could not leave that

as defined behaviour and deterministically clear the tag in

the semantics. Moreover, importing the complexities of the

architectural compression schemes into the language pointer

arithmetic semantics is unappealing. These lead us to keep

the stricter ISO rule also for CHERI C, option (a), even though

that leaves code that exploits the architectural guarantee as

UB (we would urge compiler developers to not treat that UB

aggressively).

Another potential issue is, in the other direction, that a

compiler might implement an ISO source-semantics-legal

p+(100001-100000) as (p+100001)-100000, potentially leading

to run-time non-representability. Further work is needed



ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA
Vadim Zaliva, Kayvan Memarian, Ricardo Almeida, Jessica Clarke, Brooks Davis, Alexander Richardson, David Chisnall, Brian Campbell, Ian Stark, Robert N.

M. Watson, and Peter Sewell

to check or ensure that this does not occur, but it has not

been observed in running the large corpus of code ported to

CHERI. To summarise: compilers can optimise away, but not

introduce, code that creates non-representability.

The architectural limits on representability also mean that

in some (relatively uncommon) circumstances allocators

need to use additional padding and/or alignment to ensure

that the required capability is representable and does not

overlap other allocations. This has a small cost in wasted

memory usage, but does not impact the semantics.

3.3 Pointer/Integer conversions and (u)intptr_t

Systems C code often requires bitwise or integer operations

on pointers, e.g. to examine or enforce particular alignments,

or to exploit the fact that some pointers are known to be

aligned or bounded, to store metadata in low-order or high-

order bits. C pointer types only directly support addition

and subtraction of a pointer and an integer value, so this

requires casting a pointer to an integer type, doing whatever

arithmetic is required, and, if using the result as a pointer,

casting back.

In ISO C, the types uintptr_t and intptr_t, when available,

are guaranteed to support identity round-trips; in de facto C,

round-trips involving limited arithmetic are widely relied on,

and older code often uses (unsigned) long for the same pur-

poses. In CHERI C, if one only needs the integer result, one

should cast to the new ptraddr_t and do conventional integer

computation. If one ultimately needs a pointer value, casts

to normal integer types will lose the tag and other metadata,

so this would not work. Instead, in CHERI C (u)intptr_t

are implemented with capabilities, casts between these and

pointer types are no-ops (in both directions), and arithmetic

operations on them are implemented with the corresponding

capability operations (which have the expected effects on

the address part of the capability). This minimises porting

effort for such code.

1 #include <stdint.h>

2 void f(int a, int b) {

3 int x[2];

4 int *p = &x[0];

5 uintptr_t i = (uintptr_t)p;

6 uintptr_t j = i + a;

7 uintptr_t k = j - b;

8 int *q = (int*)k;

9 *q = 1;

10 }

11 int main(void) {

12 f(100001*sizeof(int),

13 100000*sizeof(int));

14 }

However, this

forces us to return

to representability,

e.g. for (u)intptr_t

arithmetic that in

the abstract machine

becomes transiently

non-representable and

then comes back into

representability, as in

the example on the

right, and in similar

examples using bitwise

operations instead of

+/-.

There are a number of semantic issues and options to con-

sider, balancing usability (giving more code better-defined

results), optimisation at (u)intptr_t types (with performance

and compiler-modification costs), portability (among CHERI

architectures that may differ in capability encoding details),

and complexity.

(1) The simplest option would be to follow the semantics

of pointers, declaring any (u)intptr_t arithmetic resulting

in values outside one-past the original allocation bounds to

be UB – but that would break many common C idioms, both

where one eventually casts back to a pointer and uses that

for an access, and where one just uses the integer value.

(2) Alternatively, we could allow (u)intptr_t arithmetic

within some larger region of representability, with UB if

one goes outside. That would also invalidate some reason-

able idioms, e.g. using (u)intptr_t values as indices in a hash

table (though in CHERI C one should ideally use ptraddr_t

there).

(3) Finally, we could allow (u)intptr_t arithmetic within

some region of representability, but keep defined behaviour

and the integer (address-part) value of the result defined if

one goes outside.

We choose (3), but have to consider the results of casting

back to a pointer, and of inspecting the tag, bounds, and per-

missions. If hardware capability arithmetic in compiled code

goes outside the architecturally representable region, then

the tag will be cleared and any access via it will trap. How-

ever, in general, optimisation of (u)intptr_t arithmetic could

either introduce or eliminate a CHERI C abstract-machine

construction of a non-architecturally-representable capa-

bility, e.g. rewriting i+(100001-100000) to (i+100001)-100000,

or (i+100001)-100000 to i+1. The GCC section anchor opti-
misation with a negative offset could also introduce non-

representability.

(a) At one extreme, one might allow any arithmetic transfor-

mations on (u)intptr_t where the integer (address) value of

the transformed expression is the same as that of the original,

but that would mean any (u)intptr_t expression could result

in unspecified tags and bounds, which is not acceptable.

(b) At the other extreme, one could require that optimisation

never introduces or eliminates any non-representability, re-

quiring that the hardware execution matches some straight-

forward abstract-machine capability computation. This is at-

tractively simple to specify and to use, but has some runtime

cost and (perhaps more important) compiler-modification

cost, to ensure that such optimisations are not done at these

types. More data on these costs would be desirable, but for

the time being we reject this option.

(c) The intermediate position we choose is to limit op-

timisations to those that do not introduce new non-

representability, but allow them to eliminate excursions into

non-representability. We express this precise-but-loose spec-

ification in the semantics with a ghost-state bit per capability

value, recording whether abstract-machine (u)intptr_t arith-

metic ever made it non-representable in abstract-machine

execution. We permit casts to pointer types of (u)intptr_t



Formal Mechanised Semantics of CHERI C:
Capabilities, Undefined Behaviour, and Provenance ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA

capabilities with this bit set, and loads and stores of them

(otherwise memcpy of such values would become UB), but

make it UB to access memory via them.

Then one has to consider the semantics of inspecting the

bounds or tag (using intrinsics) and representation bytes

(using unsigned char* pointers) of such values. We deem all

these to give unspecified values (not UB).

Finally, we have to consider what the above “region of rep-

resentability” should be (for (1) this would be moot, as point-

ers within or one-past the original allocation are always rep-

resentable). CHERI capabilities are encoded in architecture-

specific sophisticated ways. For CHERI C, we could:

(i) Fix a relatively simple and portable definition expressing

some conservative extent supported across different CHERI

architectures and values. For 64-bit CHERI architectures,

[45, §4.3.5] says pointers are guaranteed representable if

within the greater of 1KiB and
1

8
of the object size below the

lower bound, and the greater of 2KiB and
1

4
of the object

size above the upper bound. This is reasonably simple –

but not portable to all CHERI architectures, in particular,

CHERIoT [3], which, while based on 32-bit RISC-V, uses a

different capability encoding scheme from 32-bit CHERI-

RISC-V and provides byte-granularity bounds for any object

up to 511 bytes.

(ii) Alternatively, we can make this implementation-defined,

letting implementations choose either the above or the spe-

cific underlying architectural notion of representability. This

option is attractive because it allows the use of the full range

of representable addresses, and is thus “future-proof”. The

disadvantage is that it makes it difficult to write portable

CHERI C code. For the time being we choose this option.

3.4 Pointer/Integer type punning
An additional benefit of keeping the pointer and (u)intptr_t

representations identical is that it preserves the C possibility

of type punning between them via a union, as shown below.

1 #include <stdint.h>

2 #include <inttypes.h>

3 #include <assert.h>

4 union ptr {

5 int *ptr;

6 uintptr_t iptr;

7 };

8 int main(void) {

9 int arr[] = {42,43};

10 union ptr x;

11 x.ptr = arr;

12 x.iptr += sizeof(int);

13 assert (*x.ptr == 43);

14 }

3.5 Accesses to capability representations
An essential aspect of CHERI architecture design is that

capabilities are unforgeable: attempts to manipulate their

representations, e.g. writing their bytes directly rather than

with a capability instruction, are guaranteed to clear the tag.

ISO C permits bytewise access to pointer-containing data,

e.g. to support a bytewise memcpy, so we have to consider the

extent to which this CHERI architectural property should be

reflected in the CHERI C semantics.

We want to guarantee that the tag will be cleared in the

case when its representation is modified directly. Again, op-

timisations make this challenging.

1 int main(void) {

2 int x = 0;

3 int *px = &x;

4 unsigned char *p

5 = (unsigned char *)&px;

6 p[0] = p[0];

7 *px = 1;

8 return x;

9 }

In this example, CHERI

hardware execution of an

unoptimised compilation

will clear the tag of *px on

the byte-write of Line 6,

leading to a capability ac-

cess fault at Line 7, but an

optimising compiler may

remove the identity byte-

write entirely.

To allow optimisations which preserve the address, but

do not necessarily preserve tag clearing, we use the ghost

state, similarly to how we did in Section 3.3, to enforce that

following any non-capability write to a capability, it is UB

to use it for an access. (A more extreme semantics would

be to deem any non-capability write to a capability to be

UB, but that would prevent one memzero or memcpy’ing over

some struct in a malloc’d region to re-use it, which should

be permitted.)

Another example in which optimisations can remove tag

clearing is below, in which the for loop may be optimised

(e.g. by GCC’s tree-loop-distribute-patterns) to a call to memcpy

(p1,p0,sizeof(int *)). In CHERI C, memcpy must be imple-

mented with capability-sized and aligned accesses where

possible, to preserve pointers, so this optimised code would

then preserve the capability and its tag.

1 int main(void) {

2 int x = 0;

3 int *px0 = &x;

4 int *px1;

5 unsigned char *p0 = (unsigned char *)&px0;

6 unsigned char *p1 = (unsigned char *)&px1;

7 for (int i=0; i<sizeof(int*); i++)

8 p1[i] = p0[i];

9 *px1 = 1;

10 return x;

11 }

Our semantics makes such optimisations sound using an

additional per-capability-value ghost state bit to mark the

capability, after its representation was modified directly, as

no longer suitable for memory access, resulting in UB in

Line 9.

A memcpy of part of a capability must behave semantically

like any other non-capability-sized and aligned representa-

tion access, using that ghost state bit rather than deterministi-

cally clearing the tag (which also makes sound optimisations

that combine memcpy calls for adjacent memory regions, that

at the hardware level could introduce tag preservation).

This approach uses ghost state to record abstract-machine

accesses to capability representations, to make subsequent

accesses via such capabilities UB, but we also have to ask



ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA
Vadim Zaliva, Kayvan Memarian, Ricardo Almeida, Jessica Clarke, Brooks Davis, Alexander Richardson, David Chisnall, Brian Campbell, Ian Stark, Robert N.

M. Watson, and Peter Sewell

to what extent such a capability can be examined – or, in

other words, what does the ghost state “cover”? The example

below shows some scenarios we need to consider.

1 int main(void) {

2 int x = 0;

3 int *px = &x;

4 size_t perms0 = cheri_perms_get(px);

5 unsigned char *p = (unsigned char *)&px;

6 p[0] = p[0];

7 int addr = (int)px;

8 bool tag = cheri_tag_get(px);

9 size_t perms = cheri_perms_get(px);

10 assert(perms == perms0);

11 return (*px);

12 }

Trying to access the memory using px in Line 11 should

certainly be UB. For the other operations, we have to ask:

(1) Whether the pointer-to-integer cast in Line 7, to obtain

the capability address, is UB or some implementation defined
value? For example, in Morello, we know that the lower

64 bits of a capability contain its address and the compiler

can reason how modifying the first byte will affect it. This

knowledge is specific to a particular ISA and could be used

only when targeting it.

(2) Whether the tag access in Line 8 is UB or returns an

unspecified value?

(3) Whether the permission access in Line 9 is a UB or re-

turns an unspecified or implementation-defined value, and, if

the latter, what is guaranteed about it?

To summarize, our current proposed solution is for the ab-

stract CHERI C machine to record any non-capability write

to a capability (via representation pointers or using standard

library functions) using ghost state. Using such a manipu-

lated capability to access memory is UB. Comparing it to

other capabilities using intrinsic cheri_is_equal_exact, or ex-

amining its tag via cheri_tag_get, will return an unspecified

boolean value. This way we avoid declaring such checks

to be UB. The effect of direct representation manipulation

on other capability fields except the tag is implementation
defined. That will permit ISA-specific optimisations where

the compiler is aware of the capability encoding for a target

ISA.

3.6 Pointer equality
There are several possible definitions of pointer equality (==).

Ignoring pointer provenance for now, we could take either:

(1) bitwise equality of capability representations, with tags,

(2) the same but without tags, or

(3) equality just of their address fields, without all their

capability metadata.

Intuitively the first definition may seem most natural, with

equality implying interchangeability, and that was the choice

for the early CHERI C implementation. However, pragmat-

ically it seems that porting code is most straightforward

with the third option, so that is what we adopt here. In fact,

even in ISO C, equality of pointers does not guarantee in-

terchangeability, due to pointer provenance [18], so this is

perhaps less of a departure from standard practice than it

may seem.

Additionally, CHERI C provides the intrinsic

cheri_is_equal_exact which compares two capabilities

(pointers or (u)intptr_t), comparing all fields, including

meta-information such as a tag or permissions. If some of

their fields, such as tag or bounds, are marked as unspecified

in ghost state, its return value is unspecified as well.

3.7 Capability derivation in binary arithmetic

1 #include <stdint.h>

2 int main(void) {

3 int x=0, y=0;

4 intptr_t a=(intptr_t)&x;

5 intptr_t b=(intptr_t)&y;

6 intptr_t c0 = a + b;

7 intptr_t c1 = b + a;

8 }

For binary arithmetic op-

erations on two values of

capability-carrying types,

CHERI C has to define

how the bounds and tag

of the result are derived.

Ignoring integer overflow

and representability for

the moment, in CHERI

C the resulting capabilities c0 and c1 are derived from

their left arguments. (This makes (u)intptr_t addition non-
commutative with respect to inter-substitutability and to

representation equality, while it remains commutative with

respect to == equality.)

1 #include <stdint.h>

2 int* array_shift(int *x, int n) {

3 intptr_t ip = (intptr_t)x;

4 intptr_t ip1 = sizeof(int)*n + ip;

5 int *p = (int*)ip1;

6 return p;

7 }

The next

example

demonstrates

a more inter-

esting case

of capability

derivation.

Here we im-

plement array indexing via intptr_t arithmetic. In ISO C,

the semantics of the addition will depend on the integer
conversion rank of the size_t and intptr_t types. If intptr_t

has a higher rank, then the first argument will be cast to

intptr_t and then the addition of two intptr_t values will

be performed. Otherwise, the second argument will be cast

to size_t, the addition performed on size_t values, and the

result will be cast back to intptr_t before assigning it to ip1.

Using the latter strategy in CHERI C would result in ip1

being derived from the null capability, and hence untagged.

This means that converted back to a pointer, p would be non-

dereferenceable. To avoid that, CHERI C semantics requires

that no other standard integer type shall have a higher integer
conversion rank than intptr_t and uintptr_t. Additionally,

for binary operations, the capability derivation picks as a

source for the resulting capability the argument which was



Formal Mechanised Semantics of CHERI C:
Capabilities, Undefined Behaviour, and Provenance ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA

not a result of implicit or explicit conversion from a non-

capability type.

3.8 Sub-object bounds
In C one routinely constructs pointers to a subobject of a

data structure: to a member of a struct or an element of an

array. For CHERI C, it is tempting to have the compiler auto-

matically narrow the bounds of the corresponding capability

to just that member or element, to implement the principle

of least privilege, but it is also common in C to use pointer

arithmetic and offsetof to move the resulting pointer to a

different subobject, in array indexing and the “container-of”

idiom.

Based on experience in porting code, the current default

behaviour of CHERI C is to not enforce subobject bounds.

The CHERI C semantics follows suit, though Clang/LLVM

CHERI C provides options for stricter bounds enforcement,

and the semantics should be revisited following further use.

3.9 Pointers to const-qualified types and permissions
In ISO C, objects created at const-qualified types are expected

to be immutable, so it would be natural for a capability point-

ing to a const object to not have write permission, and CHERI

C does this. Note that in ISO C it is allowed to cast a pointer

to a non-const type to a pointer to the corresponding const

type and later cast it back and modify the object; to allow

this, in CHERI C those casts are no-ops on the underlying

capability (in CHERI ISAs, clearing permission would be

irreversible).

3.10 Abstracting capabilities across architectures
The main existing CHERI C implementations support Arm

Morello (CHERI Arm-A) and CHERI RISC-V, both 64-bit,

and there is another supporting the CHERIoT extension to

RISC-V RV32E, the small RISC-V specification intended for

embedded devices [3]. One should be able to write portable

CHERI C programs across these architectures, or (sometimes)

across just the first two. That means that the C semantics

needs a common abstraction of hardware capabilities.

One part of this is the abstract address type denoted by the
new ptraddr_t C type, an integer type with implementation-

defined width and signedness. The list of permissions en-

coded in capability can vary between architectures, but there

is a common basic set which is always present. The object
type field width and values could vary. Finally, the seal type
is also architecture-dependent. Abstracting these types and

their properties allows us to talk in the CHERI C language

semantics about portable capabilities.

All existing CHERI architectures use a capability encod-

ing scheme to compress capability address and bounds, in

128 or 64 bits for 64- or 32-bit architectures, and there is a

trade-off between compression and the set of representable

addresses, as some combinations of fields may become non-

representable. To abstract from this, we make several design

choices. First, we restrict the abstract scope of compression

to four capability fields: address, flags, and upper and lower

bounds. Other fields, such as permissions, are always repre-

sented exactly. This allows us to describe most of CHERI C

semantics in terms of abstract capabilities, making it portable

across current and future implementations. In cases where

architecture-specific details matter, the corresponding parts

of CHERI C semantics are clearly designated as implementa-
tion defined.

3.11 Capabilities and provenance
As recalled in §2.3, the in-progress ISO definition of prove-

nance tracks provenance in the C abstract machine, to define

undefined-behaviour cases that are important to legitimise

current compiler optimisations based on their static analysis

of provenance – but provenance data is not carried at runtime

in conventional implementations. Meanwhile, CHERI imple-

mentations carry capabilities at runtime, and the CHERI ISA

specification [44] also speaks of “provenance”. How do these

relate to each other?

The ISO C + PNVI-ae-udi semantics rules call for several

checks based on provenance:

(1) Checking whether a pointer is inside the bounds of the

corresponding memory allocation’s footprint.

(2) Checking whether two pointers possess the same prove-

nance when subtracted or compared.

(3) Checking whether a pointer refers to a live allocation.

We believe (though have not formally proved) that the

first check is redundant in the presence of capabilities. Prove-

nance tracking enables the static overestimation of capability

runtime bounds. Capability bounds are initially set to align

with the allocation’s footprint and can be narrowed down

but not extended, thus resulting in an "overestimation".

The second check presents a challenge. It might be as-

sumed that pointers with matching or at least overlapping

bounds share the same provenance. However, this is not

valid in two scenarios: 1) when bounds have been narrowed

through intrinsic calls, resulting in non-intersecting regions,

and 2) in the absence of a capability revocation mechanism,

provenance is temporally unique, while capabilities are not.

Consequently, one could have a pointer to a heap object that

has been killed and another pointer to a newly allocated

object at the same address.

The third check is impossible in general in the absence of

some sort of capability revocation mechanism.
1

In conclusion, the capability checks at runtime could not

subsume provenance checks at compile time. The two are

complementary.

1
This is an area of ongoing research. For example, see [17]



ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA
Vadim Zaliva, Kayvan Memarian, Ricardo Almeida, Jessica Clarke, Brooks Davis, Alexander Richardson, David Chisnall, Brian Campbell, Ian Stark, Robert N.

M. Watson, and Peter Sewell

4 CHERI C executable semantics
We codified CHERI C semantics, fleshing out many details

associated with the high-level design choices described in

the previous section, as an extension of Cerberus [27, 28],

a well-validated semantic model for a substantial fragment

of ISO C. The resulting CHERI C semantics is executable

and permits running small C test programs to investigate

semantic questions.

Cerberus is expressed as a translation, from C into a small

Core language, combined with a memory object model. Most

CHERI C-related changes relate to the latter. We defined

the CHERI C memory object model in Coq and extracted

it to OCaml to integrate into Cerberus. Previous Cerberus

memory object models have been in OCaml; this Coq defini-

tion should support future proof about CHERI. The complete

Coq definition could be found in Cerberus git repository at

https://github.com/rems-project/cerberus; we explain the

main features in non-mechanised mathematics here.

4.1 Abstract capabilities
We defined abstract capabilities as a Coq module type which
defines an opaque capability type and operations on it. We

chose Arm Morello [5] for the implementation-defined as-

pects, giving a concrete executable implementation of CHERI

capabilities. We used the existing ISA model for Morello [8]

mechanically extracted from the Arm ASL reference, from

which we extracted low-level Coq implementations of the

relevant functions using Sail’s support for multiple back-

ends [7].

4.2 Undefined behaviours
CHERI C adds the following new undefined behaviours:

UB_CHERI_InvalidCap is flagged when attempting to

dereference a pointer with the capability tag cleared.

UB_CHERI_UndefinedTag is flagged on attempt to derefer-

ence a pointer with the capability tag marked as unspecified

in the ghost state.

UB_CHERI_InsufficientPermissions is flagged on an at-

tempt to perform memory access (e.g. read or write) via a

capability which does not have the permission bit set for the

given operation.

UB_CHERI_BoundsViolation is flagged on an attempt to

dereference an out of bounds pointer.
The ISO C UB012_lvalue_read_trap_representation is

flagged when an attempt to decode a stored representation

of a capability object fails.

4.3 CHERI C memory object model, in Coq
The Cerberus memory object model encapsulates all

memory-related logic, providing a clean abstract interface

to the rest of the semantics. Key data types such as the mem-
ory state, and pointer and integer values are opaque in the

module interface. All memory model operations accessing

the memory state are implemented in a memM monad, which

maintains the state and facilitates error handling.

The standard Cerberus memory model interface provides

functions for dynamic memory management (allocation, re-

lease, memcpy and memcmp); reading and writing memory val-

ues; pointer arithmetic, comparison, and alignment; and

pointer/integer conversion. Since memory values are ab-

stract outside the module, it also provides functions for rela-

tional and arithmetic operations on integer, floating point,

and pointer memory values. These operations do not depend

on the access to the memory state and are not in the memM

monad.

Our CHERI C memory object model fits nicely into this

Cerberus memory model abstraction; its interface had to be

extended only to add capability derivation (§4.4) and intrin-

sics type derivation (§4.5).

The memory state (see below) is a tuple (𝐴, 𝑆,𝑀) with
information about allocations 𝐴, PNVI-ae-udi related data

𝑆 , and the concrete representation of memory contents 𝑀 .

The CHERI memory model state is similar to the Cerberus

concrete memory model, with the 𝑀 component extended

as follows. As before the memory content is stored in an

integer-address-indexed dictionary 𝐵. Each byte consists

of provenance (𝜋 ), an optional 8-bit numeric value, and an

optional integer index. Additionally, for each capability-size

aligned memory location, we add metadata consisting of

the capability tag and a two-bit ghost state, stored in the

new 𝐶 dictionary. The first bit of the ghost state for a given

capability indicates whether the tag is unspecified, and the

second bit indicates whether the address and bounds are

unspecified.

mem_state ≜ 𝐴 × 𝑆 ×𝑀

𝑀 ≜ 𝐵 ×𝐶

𝐵 ≜ Z⇀ AbsByte

𝐶 ≜ Z⇀ B × ghost_state

ghost_state ≜ B × B
AbsByte ≜ 𝜋 × (option byte) × (option N)

integer_value ≜ Z ⊕ (B × Cap)

Pointer values are capabilities, and tag, bounds, and permis-

sion checks are performed when they are used to access

memory. When written to memory, a capability representa-

tion excluding the tag is written to 𝐵, and the tag is stored in

𝐶 . Writing non-capabilities to memory marks all previously

set tags for the corresponding address range as unspecified
in the ghost state in 𝐶 .

Integer values could be either pure numeric values for

integer types, or capabilities (with signedness flag) for (u)

intptr_t types. This representation allows us to preserve all

capability fields when casting pointers to (u)intptr_t and

back.

The memory monad used in Coq is a combination of state
and error monads. The memory state is completely internal

https://github.com/rems-project/cerberus


Formal Mechanised Semantics of CHERI C:
Capabilities, Undefined Behaviour, and Provenance ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA

to the memory model implementation. All monadic calls

to the memory interface cross the OCaml to Coq language

boundary only in one direction.

To give a flavour of the new checks require for CHERI C,

we give a formal semantics rule for the load operation below,

using similar notation to [27]. This corresponds to the func-

tion load in the full Coq definition (module CheriMemory),

which involves considerably more detail. CHERI-specific

changes are highlighted in blue and marked with †.
The auxiliary bounds-checking predicate now takes a ca-

pability instead of just an address
(1†𝑎 ) . The capability fields

include the address 𝑎, the tag, permissions set, bounds

(𝑏𝑎𝑠𝑒, 𝑙𝑖𝑚𝑖𝑡), and the ghost state bits. The test succeeds if we
have read permission

(1†
𝑏
)
, the tag is known

(1†𝑐 ) and set
(1†

𝑑
)
,

and the address is within the bounds
(1†𝑒 ) .

bounds_check
load

(𝑐, 𝑛, 𝑖, 𝐴) ≜
(1†𝑎 )𝑐 = (𝑎, tag, perm, (base, limit), (gtag, gbounds) . . . ) ∧
(1†

𝑏
)loadPerm ∈ perm ∧

(1†𝑐 )𝑔𝑡𝑎𝑔 = false (1†
𝑑
) tag = true ∧

(1†𝑒 )base ≤ 𝑎 ∧ 𝑎 + 𝑛 ≤ limit ∧
(1𝑓 )𝐴(𝑖) = (𝑛𝑖 , _, 𝑎𝑖 , alive, _, _, _) ∧
(1𝑔 ) [𝑎 .. 𝑎 + 𝑛 − 1] ⊆ [𝑎𝑖 .. 𝑎𝑖 + 𝑛𝑖 − 1]

The memory-object-model load operation takes a

pointer
(2𝑎 )

, containing provenance information and a

capability, and returns a memory value and a footprint
annotation. The capability must not be a null capability (2†

𝑏
)

and must pass the bounds check
(2𝑐 )

. The abstraction

function
(2†

𝑓
)
must successfully interpret memory bytes

(2𝑑 )

𝑏 and associated with them capability metadata
(2†𝑒 ) 𝑚 as

a C value 𝑣 of type 𝜏 . Finally, (2𝑔 )
prevents reading from

uninitialized memory, which would result in unspecified

values.

The helper function expose, which remains unchanged

from PNVI-ae-udi, accepts the abstract state 𝐴 and a set

of tainted allocations 𝐼 as input. It designates the specified

allocation 𝑖 as exposed if it was previously included in the

set of allocations and marked as alive.

[label : load(𝜏, 𝑝) = (𝑣, fp)]
(2𝑎 )𝑝 = (@𝑖, 𝑐) (2𝑐 )

bounds_check
load

(𝑐, sizeof(𝜏), 𝑖, 𝐴)
𝑐 = (𝑎, . . . ) (2†𝑒 )𝑚 = 𝐶 [𝑎 .. 𝑎 + sizeof(𝜏) − 1]
(2†

𝑏
)¬cap_is_null(𝑐) (2𝑑 )𝑏 = 𝐵 [𝑎 .. 𝑎 + sizeof(𝜏) − 1]

(2𝑔 )𝑣 ≠ Unspecified
(2†

𝑓
)
Some (𝑣, 𝐼tainted , 𝑆′, []) = abst(𝐴, 𝑆, 𝜏, 𝑏,𝑚)

fp = R(𝑎, sizeof(𝜏)) 𝐴′ =

{
expose(𝐴, 𝐼tainted ) is_integer(𝜏)
𝐴 otherwise

(𝐴, 𝑆, (𝐵,𝐶)) → (𝐴′, 𝑆′, (𝐵,𝐶))

4.4 Capability Derivation
For unary and binary operations on integer values involv-

ing at least one capability-carrying type, CHERI C needs to

choose which will be used to derive the resulting capability.

We made this derivation step explicit by elaborating it in the

intermediate Core language.

4.5 Intrinsics
Many of the CHERI C intrinsics are polymorphic in the

capability type they accept, and their return typemay depend

on it. This does not fit the standard C type system and to

implement this in Cerberus we extended it with a special

type derivation mechanism, implemented via an embedded

DSL.

5 Validation and Experimental Comparison
Wevalidate that our design decisions of §3 are appropriate for

CHERI C by discussion with designers and implementers of

the existing CHERI C implementations, and with developers

who have ported large bodies of code to CHERI C; these

discussions identified a number of previously unconsidered

issues discussed there.

We validate experimentally that our executable mecha-

nised semantics has the intended behaviour, and that this

and the behaviour of the Clang/LLVM and GCC implemen-

tations are consistent. We developed a test suite of 94 tests

exercising and demonstrating various aspects of CHERI C

semantics, especially where they may be unclear or differ

from ISO C. Table 1 summarizes the semantic categories

along with the number of tests that cover each category.

We compiled and ran all our tests using three CHERI C

implementations and compared the results. We found that

existing implementations are mostly compatible with this

standard, with some minor bugs but no principal disagree-

ments. Our assessment of their compliance with CHERI C,

as defined by this document, is summarised below. The com-

plete results of our testing are available at https://www.cl.
cam.ac.uk/~vz231/asplos24/test-results/.

The output from a single test is presented in Appendix A.

This test evaluates how both signed and unsigned integer

types manage bitwise operations with intptr_t. With Clang,

non-representability issues arise for cap&int and cap&uint

as the operation clears the upper bits of the address, leading

to a value below the lower bound. In contrast, GCC does not

exhibit this issue, likely because of its memory allocator’s

address ranges. Cerberus demonstrates non-representability

in the ghost state for cap&int, where the value falls beneath

the lower bound.

Several interesting aspects of the semantics are related to

potential compiler optimisations, and writing tests to exer-

cise those well is (as usual) a challenging problem, which we

leave for future work. Our focus here is on exercising the

main semantic choices.

https://www.cl.cam.ac.uk/~vz231/asplos24/test-results/
https://www.cl.cam.ac.uk/~vz231/asplos24/test-results/


ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA
Vadim Zaliva, Kayvan Memarian, Ricardo Almeida, Jessica Clarke, Brooks Davis, Alexander Richardson, David Chisnall, Brian Campbell, Ian Stark, Robert N.

M. Watson, and Peter Sewell

Tests Description

10 Checking capability alignment in the memory.

10 Memory allocator interface (locals, globals, and heap).

2 Capabilities produced by taking addresses of arrays

and their elements.

3 Operations offseting pointers as in taking an address

of array element at an index.

2 Assigning constants and values of capability-carrying

types to capability-typed variables.

1 Issues related to calling convention: passing arguments,

variable argument functions, etc.

5 Implicit/explicit casts between capability-carrying types.

5 C const modifier and its effects on capabilities.

10 Equality between capability-carrying types.

11 Pointers to functions.

6 Pointers to global vs. local variables.

4 Initialization of variables carrying capabilities.

19 Properties and definition of (u)intptr_t types.

9 Arithmetic operations on (u)intptr_t values.

3 Bitwise operations on (u)intptr_t values.

16 Semantics of CHERI C intrinsic functions

(e.g, permission manipulation).

15 Unforgeability enforcement for capabilities.

6 Capabilities encoding for Arm Morello architecture.

6 null pointers and NULL constant as capabilities.

1 ISO-legal pointers one-past an object’s footprint and

their bounds.

5 Out-of-bounds memory-access handling.

10 Effects of compiler optimisations.

5 Capability permissions: setting and enforcement.

7 pointer provenance tracking per [18].
2 New ptraddr_t type definition and usage.

2 Implementation of pointer arithmetic on capabilities.

9 Conversion between pointer and integer types.

4 Relational comparison operators (e.g. <,>,<= and >=)

for capabilities.

6 Issues related to potential non-representability of some

combinations of capability fields.

9 Tests related to accessing capabilities

in-memory representation.

5 Accessing memory via capabilities after the region has

been deallocated.

5 Handling of (un)signed integer types in casts, accessing

capability fields, and intrinsics.

6 Standard C library functions handling of capabilities.

3 Sub-objects bound enforcement via capabilities.

Table 1. Summary of the tests for which we compared the

results on three CHERI C implementations.

5.1 Cerberus
This is our reference implementation of semantics and it

passes all our tests with the results we expect, modulo one

known bug relating to const behaviour. A further known

shortcoming is that not all intrinsic functions were imple-

mented.

5.2 Clang/LLVM
This was the first CHERI C compiler and is the most mature.

It supports three CHERI backends: Morello (CHERI Arm-

A), CHERI-RISC-V, and CHERI-MIPS. It has proven to be

quite robust and used to port and compile CheriBSD and

other software such as KDE. The CHERI C language was

developed and refined using this compiler as a testbed to try

various aspects of CHERI C semantics. The compiler supports

several modes of sub-object bounds enforcement, but we

only tested the “conservative” setting as it is the one closest

to our semantic definition. We compiled for Morello and

CHERI-RISC-V and tested compiled binaries under CheriBSD

running under CHERI-QEMU.

Not surprisingly, we found it to be mostly compliant with

our CHERI C semantics definition. Our test suite indepen-

dently identified two known issues that had been previously

reported and acknowledged by the compiler team. It also

rediscovered an upstream bug present in the LLVM version

CHERI LLVM is currently based on but already fixed in later

versions. Additionally, our suite detected one spurious warn-

ing message and two bugs in the realloc function of the

CheriBSD jemalloc library. Some warning messages emitted

by the compiler use terminology that is different from the ter-

minology used in this paper (e.g., “capability provenance” vs

“capability derivation”), but they are not otherwise incorrect.

Under CHERI-RISC-V (version 8), some test results do

not match our semantics. These failures are caused by: 1)

an exception when attempting to change the bounds of an

untagged capability, and 2) an exception when attempting

to modify the sentry capability. However, the current draft

of version 9 of the ISA specification [43] changes these be-

haviours to changing bounds and clearing the tag, respec-

tively. With these changes, it should be compatible with our

semantics.

5.3 GCC
CHERI GCC is a relatively new arrival. There have been

two public releases, and we have seen significant progress

in CHERI C support between them. We run compiled “bare

metal” binaries under CHERI-QEMU. Our test suite identified

five issues in the latest public release of the compiler and run-

time, all of which were reported to the developers. One was

confirmed as a bug in the compiler. Two issues related to a

memory allocator were deferred to a different project (newlib,
the libc implementation used in this baremetal environment.

The two remaining issues have not yet been confirmed at

the time of writing.

5.4 CHERIoT
CHERIoT utilises an LLVM-based compiler, specifically tar-

geting embedded systems. As a result of its focus on embed-

ded systems, executing our test suite would require exten-

sive tooling and modifications to the tests, which we have



Formal Mechanised Semantics of CHERI C:
Capabilities, Undefined Behaviour, and Provenance ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA

not done. Nevertheless, based on discussion with CHERIoT

designers and their review of our semantics specification,

our CHERI C semantics are applicable to CHERIoT. It is im-

portant to note that CHERIoT provides additional temporal

guarantees and defines certain aspects that we regard as

undefined behaviour.

6 Related work
Memory safety has been a pivotal area of research for several

decades [13]. While there exists a vast body of work on this

topic, in this section, we focus on the work most closely

related to ours. These can be broadly categorized into four

groups below, with examples for the last three being non-

exhaustive.

6.1 CHERI C semantics and program analysis
The most closely related work is Park et al. [34], which

presents a formalized CHERI-C memory object model in

Isabelle/HOL [33]. That memory model, which is based on

the CompCert block/offset model [24], is more abstract than

ours, which utilises a finite flat address space that alignsmore

closely with hardware architectures. They do not address

non-representability, pointer-to-integer conversion, or po-

tential optimisations eliminating capability invalidation from

direct byte manipulations. Handling of (u)intptr_t types and

capability derivation in arithmetic operations are also absent.

They provide proofs of essential properties (which we do

not), and their model is combined with the Gillian program

analysis framework [25], with a front-end based on Clang

and ESBMC [9] to support execution of concrete examples.

Brauße et al. present a bounded model checker for CHERI-

C programs [9]. This is a viable approach to find some po-

tential code safety violations in CHERI C programs, but does

not provide a complete formal semantics for the CHERI C

language, or even for the CHERI C memory object model.

6.2 Architecture-level memory protection
This category comprises systems like Hardbound [14] and

Softbound [30] which have similar goals to CHERI, using ad-

ditional metadata associated with pointers to provide mem-

ory protection. Comparisons between these systems and

CHERI are available in the existing CHERI literature. Specifi-

cally, one can refer to the ISCA 2014 paper by Woodruff et al.

[48] and “Historical Context and Related Work” section of

[44]. They tend not to consider the source-level C semantics

beyond issues that arise during implementation. Providing

such semantics presents similar challenges to CHERI C and

while the details would differ considerably we expect that

our approach would be equally applicable.

Softbound illustrates an interesting example of this: the

protection checks are added after the main compiler opti-

misation passes, and so their safety proof does not apply to

the original source program. In work on santizers, Isemann

et al [20] demonstrate that this is a real problem because

(for example) bad memory accesses can be optimised away

and so the checks are never performed. This is exactly the

difficulty that our semantics anticipates and allows for in

Section 3.1.

6.3 C dialects with added memory safety
Without the hardware support of the CHERI ISA, these

projects use a combination of compile-time and runtime

checks. They employ static code analysis and often depend

on type annotations.

There are several dialects of C, such as Checked-C [37]

and CCured [31], that aim to provide memory safety. Broadly

speaking, they are further away in their semantics and type

system from ISO C than CHERI C is, and require additional

type annotations and source code changes to ensure memory

safety. In some cases, safety guarantees only apply to parts of

the code (checked regions in Checked-C), and mixing checked

and unchecked pointers is allowed. CCured relies on whole-

program analysis, using different pointer representations

for various pointer types. This poses some difficulties with

separate compilation and the use of third-party libraries. At

the same time, they provide a path for incremental migration

to a type-safe language which does not require hardware

support.

Castro et al. [10] employ static code analysis to enforce

data flow integrity, preserving the standard ISO C semantics

without modifications. However, this approach has notable

drawbacks: it results in substantial memory and runtime

overhead, requires major alterations to existing compilers,

and demands extra efforts to instrument both the standard

library and third-party binary code.

The Deputy [11] project augments the C language type

system with dependent types. While it relies on type anno-

tations provided by the programmer, in some cases types

can be inferred. It was implemented through several com-

piler passes, including type inference, flow-insensitive type

checking and instrumentation, and check optimisation. Be-

yond the added complexity of implementing these passes,

dynamic assertions are generated for type constraints involv-

ing dynamic values, leading to additional runtime overhead.

Porting existing code necessitates the addition of type an-

notations, and in some instances, requires the code to be

rewritten to mark it as trusted.

Dynamic binary instrumentation frameworks, such as

Valgrind [32], and tools based on them, like memcheck [40],

are useful for debugging and testing to find memory safety

problems. However, due to significant performance overhead

and deployment complexity, they are not typically suitable

for production use.

Backward-compatible bounds checking techniques, such

as those in [2, 15, 16, 22, 38, 39], modify the compiler and

utilise a runtime library to track pointers’ bounds infor-

mation in a separate data structure at runtime. Limitations



ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA
Vadim Zaliva, Kayvan Memarian, Ricardo Almeida, Jessica Clarke, Brooks Davis, Alexander Richardson, David Chisnall, Brian Campbell, Ian Stark, Robert N.

M. Watson, and Peter Sewell

of these approaches, including interactions with uninstru-

mented libraries, the lack of support for integer-to-pointer

casts ([15]), substitution of array bounds checks with coarser

pool bounds checks ([2, 15]), and reliance on the undecidable

flow-insensitive points-to analysis [35], do not ensure the com-

plete elimination of classes of memory problems, a guarantee

that CHERI C promises to offer. Lastly, the non-negligible

performance costs render them unsuitable for production

use.

6.4 Memory-safe languages
The final category includes memory-safe languages like Rust

[26]. The main appeal of CHERI C and other memory-safe

dialects of the C language lies in their ability to port existing

legacy C code without the need for substantial rewriting.

With this in mind, we do not compare CHERI C to other

such languages here.

7 Conclusion
Our mechanised semantics for CHERI C should provide clar-

ity of what is (and is not) guaranteed by the language, helping

to avoid any divergence between implementations and pro-

mote portability of CHERI C code; it has already clarified

a number of the issues we describe. It moreover enables a

wide range of potential future work.

The discussion here of the interaction between CHERI

hardware architectural guarantees and C compiler optimi-

sations and undefined behaviour makes clear that further

work is needed to understand what precise security proper-

ties CHERI C implementations could reasonably provide.

The fact that our semantics is executable means that it

could be used as a test oracle for more aggressive compiler

testing, letting one use randomly generated tests without

manually curating their intended results.

The fact that the memory object model is mechanised in

a theorem prover (Coq) makes it potentially usable for proof

about the language, e.g. to make precise properties such as

provenance validity and capability integrity that are infor-

mally described in the CHERI architecture specification [45].

The semantics would provide a solid basis for program

analysis or model-checking of CHERI C.

Finally, this work can provide a basis for extensions to

CHERI temporal safety [17] and subobject bounds [36].

Acknowledgements. This work was supported by the UK
Industrial Strategy Challenge Fund (ISCF) under the Digital

Security by Design (DSbD) Programme, to deliver a DSb-

Dtech enabled digital platform (grant 105694). This project

has received funding from the European Research Council

(ERC) under the European Union’s Horizon 2020 research

and innovation programme (grant agreement No 789108,

ERC AdG ELVER). Distribution Statement A: Approved for

public release; distribution is unlimited. This work was sup-

ported by the Defense Advanced Research Projects Agency

(DARPA) and the Air Force Research Laboratory (AFRL),

under contracts HR0011-22-C-0110 (“ETC”) and HR0011-23-

C-0031 (“MTSS”). The views, opinions, and/or findings con-

tained in this report are those of the authors and should not

be interpreted as representing the official views or policies

of the Department of Defense or the U.S. Government.

A Sample test suite output
1 #include <stdint.h>

2 #include <stdio.h>

3 #include <limits.h>

4 #include "capprint.h"

5

6 int main(void) {

7 int x[2]={42,43};

8 intptr_t ip = (intptr_t)&x;

9 fprintf(stderr,"cap %" PTR_FMT "\n", sptr((void*)ip));

10 intptr_t ip2 = ip & UINT_MAX;

11 fprintf(stderr,"cap&uint %" PTR_FMT "\n", sptr((void*)ip2));

12 intptr_t ip3 = ip & INT_MAX;

13 fprintf(stderr,"cap&int %" PTR_FMT "\n", sptr((void*)ip3));

14 }

cerberus-cheri-coq:

cap (@86, 0xffffe6dc [rwRW,0xffffe6dc-0xffffe6e4])

cap&uint (@86, 0xffffe6dc [rwRW,0xffffe6dc-0xffffe6e4])

cap&int (@empty, 0x7fffe6dc [?-?] (notag))

clang-riscv-O3-bounds-subobject-safe:

cap 0x3fffdfff08 [rwRW,0x3fffdfff08-0x3fffdfff10]

cap&uint 0xffdfff08 [rwRW,0xffdfff08-0xffdfff10] (invalid)

cap&int 0x7fdfff08 [rwRW,0x7fdfff08-0x7fdfff10] (invalid)

clang-riscv-O3-bounds-conservative:

cap 0x3fffdffef8 [rwRW,0x3fffdffef8-0x3fffdfff00]

cap&uint 0xffdffef8 [rwRW,0xffdffef8-0xffdfff00] (invalid)

cap&int 0x7fdffef8 [rwRW,0x7fdffef8-0x7fdfff00] (invalid)

clang-riscv-O0-bounds-conservative,clang-riscv-O0-bounds-references-only,

clang-riscv-O0-bounds-subobject-safe,clang-riscv-O0-bounds-aggressive,

clang-riscv-O0-bounds-very-aggressive,

clang-riscv-O0-bounds-everywhere-unsafe:

cap 0x3fffdfff78 [rwRW,0x3fffdfff78-0x3fffdfff80]

cap&uint 0xffdfff78 [rwRW,0xffdfff78-0xffdfff80] (invalid)

cap&int 0x7fdfff78 [rwRW,0x7fdfff78-0x7fdfff80] (invalid)

clang-morello-O3-bounds-subobject-safe:

cap 0xfffffff7ff08 [rwRW,0xfffffff7ff08-0xfffffff7ff10]

cap&uint 0xfff7ff08 [rwRW,0xfff7ff08-0xfff7ff10] (invalid)

cap&int 0x7ff7ff08 [rwRW,0x7ff7ff08-0x7ff7ff10] (invalid)

clang-morello-O3-bounds-conservative:

cap 0xfffffff7ff28 [rwRW,0xfffffff7ff28-0xfffffff7ff30]

cap&uint 0xfff7ff28 [rwRW,0xfff7ff28-0xfff7ff30] (invalid)

cap&int 0x7ff7ff28 [rwRW,0x7ff7ff28-0x7ff7ff30] (invalid)

clang-morello-O0-bounds-conservative,clang-morello-O0-bounds-references-only,

clang-morello-O0-bounds-subobject-safe, clang-morello-O0-bounds-aggressive,

clang-morello-O0-bounds-very-aggressive,

clang-morello-O0-bounds-everywhere-unsafe:

cap 0xfffffff7ff68 [rwRW,0xfffffff7ff68-0xfffffff7ff70]

cap&uint 0xfff7ff68 [rwRW,0xfff7ff68-0xfff7ff70] (invalid)

cap&int 0x7ff7ff68 [rwRW,0x7ff7ff68-0x7ff7ff70] (invalid)

gcc-morello-O3:

cap 0x7fffffc8 [rwRW,0x7fffffc8-0x7fffffd0]

cap&uint 0x7fffffc8 [rwRW,0x7fffffc8-0x7fffffd0]

cap&int 0x7fffffc8 [rwRW,0x7fffffc8-0x7fffffd0]

gcc-morello-O0:

cap 0x7fffff88 [rwRW,0x7fffff88-0x7fffff90]

cap&uint 0x7fffff88 [rwRW,0x7fffff88-0x7fffff90]

cap&int 0x7fffff88 [rwRW,0x7fffff88-0x7fffff90]



Formal Mechanised Semantics of CHERI C:
Capabilities, Undefined Behaviour, and Provenance ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA

References
[1] CHERI x86-64 Sail model. https://github.com/CTSRD-CHERI/sail-

cheri-x86. Accessed 2023-04-17.

[2] Periklis Akritidis, Manuel Costa, Miguel Castro, and Steven Hand.

Baggy bounds checking: An efficient and backwards-compatible de-

fense against out-of-bounds errors. In USENIX Security Symposium,

volume 10, page 96, 2009.

[3] Saar Amar, Tony Chen, David Chisnall, Felix Domke, Nathaniel Filardo,

Kunyan Liu, Robert Norton-Wright, Yucong Tao, Robert N. M. Watson,

and Hongyan Xia. CHERIoT: Rethinking security for low-cost embed-

ded systems. Technical Report MSR-TR-2023-6, Microsoft, February

2023. URL: https://www.microsoft.com/en-us/research/publication/
cheriot-rethinking-security-for-low-cost-embedded-systems/.

[4] Arm. Arm Morello Program. https://developer.arm.com/architectures/
cpu-architecture/a-profile/morello, 2022. Accessed 2021-06-29.

[5] Arm Ltd. Arm® architecture reference manual supplement Morello

for A-profile architecture. https://developer.arm.com/documentation/
ddi0606/latest, June 2021. DDI0606A.j. 1288pp. Accessed 2022-06-15.

[6] Arm Ltd. Arm Morello program, landing page for Morello open source

software. https://www.morello-project.org/, November 2022.

[7] Alasdair Armstrong, Thomas Bauereiss, Brian Campbell, Alastair Reid,

Kathryn E. Gray, Robert M. Norton, Prashanth Mundkur, Mark Was-

sell, Jon French, Christopher Pulte, Shaked Flur, Ian Stark, Neel Krish-

naswami, and Peter Sewell. ISA semantics for ARMv8-A, RISC-V, and

CHERI-MIPS. Proc. ACM Program. Lang., 3(POPL):71:1–71:31, 2019.
doi:10.1145/3290384.

[8] Thomas Bauereiss, Brian Campbell, Thomas Sewell, Alasdair Arm-

strong, Lawrence Esswood, Ian Stark, Graeme Barnes, Robert N. M.

Watson, and Peter Sewell. Verified security for the Morello capability-

enhanced prototype arm architecture. In Ilya Sergey, editor, Program-
ming Languages and Systems - 31st European Symposium on Program-
ming, ESOP 2022, Held as Part of the European Joint Conferences on
Theory and Practice of Software, ETAPS 2022, Munich, Germany, April
2-7, 2022, Proceedings, volume 13240 of Lecture Notes in Computer Sci-
ence, pages 174–203. Springer, 2022. http://www.cl.cam.ac.uk/~pes20/
morello-proofs-esop2022.pdf. doi:10.1007/978-3-030-99336-8\_7.

[9] Franz Brauße, Fedor Shmarov, Rafael Menezes, Mikhail R. Gadelha,

Konstantin Korovin, Giles Reger, and Lucas C. Cordeiro. ESBMC-

CHERI: Towards verification of C programs for CHERI platforms

with ESBMC. In Proceedings of the 31st ACM SIGSOFT International
Symposium on Software Testing and Analysis, ISSTA 2022, page 773–776,

New York, NY, USA, 2022. Association for Computing Machinery.

doi:10.1145/3533767.3543289.

[10] Miguel Castro, Manuel Costa, and Tim Harris. Securing software by

enforcing data-flow integrity. In Proceedings of the 7th Symposium on
Operating Systems Design and Implementation, OSDI ’06, page 147–160,
USA, 2006. USENIX Association.

[11] Jeremy Condit, Matthew Harren, Zachary Anderson, David Gay, and

George C. Necula. Dependent types for low-level programming. In

Proceedings of the 16th European Symposium on Programming, ESOP’07,
page 520–535, Berlin, Heidelberg, 2007. Springer-Verlag.

[12] Brooks Davis, Robert N. M. Watson, Alexander Richardson, Peter G.

Neumann, Simon W. Moore, John Baldwin, David Chisnall, Jessica

Clarke, Nathaniel Wesley Filardo, Khilan Gudka, Alexandre Joannou,

Ben Laurie, A. Theodore Markettos, J. Edward Maste, Alfredo Mazz-

inghi, Edward Tomasz Napierala, Robert M. Norton, Michael Roe,

Peter Sewell, Stacey Son, and Jonathan Woodruff. CheriABI: Enforc-

ing Valid Pointer Provenance and Minimizing Pointer Privilege in the

POSIX C Run-time Environment. In Proceedings of the Twenty-Fourth
International Conference on Architectural Support for Programming Lan-
guages and Operating Systems, ASPLOS ’19, pages 379–393. ACM, 2019.

URL: https://www.cl.cam.ac.uk/research/security/ctsrd/pdfs/201904-
asplos-cheriabi.pdf, doi:10.1145/3297858.3304042.

[13] Peter J. Denning. Virtual memory. ACM Comput. Surv., 2(3):153–189,
sep 1970. doi:10.1145/356571.356573.

[14] Joe Devietti, Colin Blundell, Milo M. K. Martin, and Steve Zdancewic.

Hardbound: Architectural support for spatial safety of the C program-

ming language. In Proceedings of the 13th International Conference
on Architectural Support for Programming Languages and Operating
Systems, ASPLOS XIII, page 103–114, New York, NY, USA, 2008. Asso-

ciation for Computing Machinery. doi:10.1145/1346281.1346295.

[15] Dinakar Dhurjati, Sumant Kowshik, and Vikram Adve. Safecode:

Enforcing alias analysis for weakly typed languages. In Proceedings of
the 27th ACM SIGPLAN Conference on Programming Language Design
and Implementation, PLDI ’06, page 144–157, New York, NY, USA,

2006. Association for Computing Machinery. doi:10.1145/1133981.

1133999.

[16] B. Ding, Y. He, Y. Wu, A. Miller, and J. Criswell. Baggy bounds with

accurate checking. In 2012 IEEE 23rd International Symposium on
Software Reliability Engineering Workshops (ISSREW), pages 195–200,
Los Alamitos, CA, USA, nov 2012. IEEE Computer Society. URL:

https://doi.ieeecomputersociety.org/10.1109/ISSREW.2012.24, doi:10.
1109/ISSREW.2012.24.

[17] Wesley Nathaniel Filardo, Brett F. Gutstein, Jonathan Woodruff,

Sam Ainsworth, Lucian Paul-Trifu, Brooks Davis, Hongyan Xia,

Edward Tomasz Napierala, Alexander Richardson, John Baldwin,

David Chisnall, Jessica Clarke, Khilan Gudka, Alexandre Joannou,

A. Theodore Markettos, Alfredo Mazzinghi, Robert M. Norton, Michael

Roe, Peter Sewell, Stacey Son, Timothy M. Jones, Simon W. Moore,

Peter G. Neumann, and Robert N. M. Watson. Cornucopia: Temporal

Safety for CHERI Heaps. In 2020 IEEE Symposium on Security and
Privacy (SP), pages 608–625, 2020. doi:10.1109/SP40000.2020.00098.

[18] Jens Gustedt, Peter Sewell, Kayvan Memarian, Victor BF Gomes, and

Martin Uecker. A Provenance-aware Memory Object Model for C,

2022. Working draft ISO Technical Specification TS6010.

[19] Ben Hawkes. 0day in the wild. 2019. Project Zero team blog, Google.

https://googleprojectzero.blogspot.com/p/0day.html. Accessed 2023-
04-19.

[20] Raphael Isemann, CristianoGiuffrida, Herbert Bos, Erik van der Kouwe,

and Klaus von Gleissenthall. Don’t look UB: Exposing sanitizer-eliding

compiler optimizations. Proc. ACM Program. Lang., 7(PLDI), jun 2023.

doi:10.1145/3591257.

[21] ISO WG14. Programming languages – C, ISO/IEC 9899:2018 edition,

July 2018.

[22] Richard WM Jones and Paul HJ Kelly. Backwards-compatible bounds

checking for arrays and pointers in C programs. In AADEBUG, vol-
ume 97, pages 13–26, 1997.

[23] Chris Lattner and Vikram Adve. LLVM: A Compilation Framework

for Lifelong Program Analysis & Transformation. In Proceedings of the
2004 International Symposium on Code Generation and Optimization
(CGO’04), Palo Alto, California, Mar 2004.

[24] Xavier Leroy, Andrew W Appel, Sandrine Blazy, and Gordon Stewart.

The CompCert memory model, version 2. PhD thesis, Inria, 2012.

[25] PetarMaksimovic, Sacha-Élie Ayoun, José Fragoso Santos, and Philippa

Gardner. Gillian, part II: real-world verification for JavaScript and C.

In Alexandra Silva and K. Rustan M. Leino, editors, Proceedings of the
33rd Computer Aided Verification International Conference, CAV 2021,
Virtual Event, July 20-23, 2021, Part II, volume 12760 of Lecture Notes in
Computer Science, pages 827–850. Springer, 2021. doi:10.1007/978-
3-030-81688-9\_38.

[26] Nicholas D. Matsakis and Felix S. Klock. The Rust language. In Pro-
ceedings of the 2014 ACM SIGAda Annual Conference on High Integrity
Language Technology, HILT ’14, page 103–104, New York, NY, USA,

2014. Association for Computing Machinery. doi:10.1145/2663171.

2663188.

[27] Kayvan Memarian. The Cerberus C semantics. Technical Report

UCAM-CL-TR-981, University of Cambridge, Computer Laboratory,

https://github.com/CTSRD-CHERI/sail-cheri-x86
https://github.com/CTSRD-CHERI/sail-cheri-x86
https://www.microsoft.com/en-us/research/publication/cheriot-rethinking-security-for-low-cost-embedded-systems/
https://www.microsoft.com/en-us/research/publication/cheriot-rethinking-security-for-low-cost-embedded-systems/
https://developer.arm.com/architectures/cpu-architecture/a-profile/morello
https://developer.arm.com/architectures/cpu-architecture/a-profile/morello
https://developer.arm.com/documentation/ddi0606/latest
https://developer.arm.com/documentation/ddi0606/latest
https://www.morello-project.org/
https://doi.org/10.1145/3290384
http://www.cl.cam.ac.uk/~pes20/morello-proofs-esop2022.pdf
http://www.cl.cam.ac.uk/~pes20/morello-proofs-esop2022.pdf
https://doi.org/10.1007/978-3-030-99336-8_7
https://doi.org/10.1145/3533767.3543289
https://www.cl.cam.ac.uk/research/security/ctsrd/pdfs/201904-asplos-cheriabi.pdf
https://www.cl.cam.ac.uk/research/security/ctsrd/pdfs/201904-asplos-cheriabi.pdf
https://doi.org/10.1145/3297858.3304042
https://doi.org/10.1145/356571.356573
https://doi.org/10.1145/1346281.1346295
https://doi.org/10.1145/1133981.1133999
https://doi.org/10.1145/1133981.1133999
https://doi.ieeecomputersociety.org/10.1109/ISSREW.2012.24
https://doi.org/10.1109/ISSREW.2012.24
https://doi.org/10.1109/ISSREW.2012.24
https://doi.org/10.1109/SP40000.2020.00098
https://googleprojectzero.blogspot.com/p/0day.html
https://doi.org/10.1145/3591257
https://doi.org/10.1007/978-3-030-81688-9_38
https://doi.org/10.1007/978-3-030-81688-9_38
https://doi.org/10.1145/2663171.2663188
https://doi.org/10.1145/2663171.2663188


ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA
Vadim Zaliva, Kayvan Memarian, Ricardo Almeida, Jessica Clarke, Brooks Davis, Alexander Richardson, David Chisnall, Brian Campbell, Ian Stark, Robert N.

M. Watson, and Peter Sewell

May 2023. URL: https://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-
981.pdf, doi:10.48456/tr-981.

[28] Kayvan Memarian, Victor B. F. Gomes, Brooks Davis, Stephen Kell,

Alexander Richardson, Robert N. M. Watson, and Peter Sewell. Explor-

ing C Semantics and Pointer Provenance. Proc. ACM Program. Lang.,
3(POPL), January 2019. doi:10.1145/3290380.

[29] Matt Miller. Trends, challenge, and shifts in software vulnerability mit-

igation. https://github.com/Microsoft/MSRC-Security-Research/tree/
master/presentations/2019_02_BlueHatIL, February 2019. Microsoft

Security Response Center.

[30] Santosh Nagarakatte, Jianzhou Zhao, Milo M.K. Martin, and Steve

Zdancewic. Softbound: Highly compatible and complete spatial mem-

ory safety for c. In Proceedings of the 30th ACM SIGPLAN Conference
on Programming Language Design and Implementation, PLDI ’09, page
245–258, New York, NY, USA, 2009. Association for Computing Ma-

chinery. doi:10.1145/1542476.1542504.

[31] George C. Necula, Scott McPeak, and Westley Weimer. CCured: type-

safe retrofitting of legacy code. In John Launchbury and John C.

Mitchell, editors, Conference Record of POPL 2002: The 29th SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, Portland,
OR, USA, January 16-18, 2002, pages 128–139. ACM, 2002. doi:10.

1145/503272.503286.

[32] Nicholas Nethercote and Julian Seward. Valgrind: a framework for

heavyweight dynamic binary instrumentation. ACM Sigplan notices,
42(6):89–100, 2007.

[33] Tobias Nipkow, Lawrence C. Paulson, and Markus Wenzel. Is-

abelle/HOL: A proof assistant for higher-order logic. In TPHOLs,
pages 1–18. Springer, 2002.

[34] Seung Hoon Park, Rekha Pai, and Tom Melham. A formal CHERI-C

semantics for verification, 2023. Accepted to appear in TACAS 2023.

https://arxiv.org/abs/2211.07511. arXiv:2211.07511.
[35] Thomas Reps. Undecidability of context-sensitive data-dependence

analysis. ACM Trans. Program. Lang. Syst., 22(1):162–186, jan 2000.

doi:10.1145/345099.345137.

[36] Alexander Richardson. Complete spatial safety for C and C++ using

CHERI capabilities. Technical Report UCAM-CL-TR-949, University of

Cambridge, Computer Laboratory, June 2020. URL: https://www.cl.cam.
ac.uk/techreports/UCAM-CL-TR-949.pdf, doi:10.48456/tr-949.

[37] Andrew Ruef, Leonidas Lampropoulos, Ian Sweet, David Tarditi, and

Michael Hicks. Achieving safety incrementally with Checked C. In

Flemming Nielson and David Sands, editors, Principles of Security and
Trust - 8th International Conference, POST 2019, Held as Part of the
European Joint Conferences on Theory and Practice of Software, ETAPS
2019, Prague, Czech Republic, April 6-11, 2019, Proceedings, volume

11426 of Lecture Notes in Computer Science, pages 76–98. Springer,
2019. doi:10.1007/978-3-030-17138-4\_4.

[38] Olatunji Ruwase and Monica S Lam. A practical dynamic buffer over-

flow detector. In NDSS, volume 2004, pages 159–169, 2004.

[39] Konstantin Serebryany and Timur Iskhodzhanov. AddressSanitizer: A

fast address sanity checker. In Presented as part of the 2012 USENIX
Annual Technical Conference (ATC 12), pages 309–318. USENIX, 2012.

[40] Julian Seward and Nicholas Nethercote. Using Valgrind

to detect undefined value errors with Bit-Precision. In

2005 USENIX Annual Technical Conference (USENIX ATC
05), Anaheim, CA, April 2005. USENIX Association. URL:

https://www.usenix.org/conference/2005-usenix-annual-technical-
conference/using-valgrind-detect-undefined-value-errors-bit.

[41] UKRI. Digital security by design. https://www.dsbd.tech/ and

https://www.ukri.org/our-work/our-main-funds/industrial-strategy-
challenge-fund/artificial-intelligence-and-data-economy/digital-
security-by-design-challenge/, 2022. Accessed 2021-06-29.

[42] Robert N. M. Watson, Ben Laurie, and Alexander Richardson. As-

sessing the Viability of an Open- Source CHERI Desktop Soft-

ware Ecosystem. http://www.capabilitieslimited.co.uk/pdfs/20210917-

capltd-cheri-desktop-report-version1-FINAL.pdf, September 2021.

[43] Robert N. M. Watson, Peter G. Neumann, Jonathan Woodruff, Michael

Roe, Hesham Almatary, Jonathan Anderson, John Baldwin, Graeme

Barnes, David Chisnall, Jessica Clarke, Brooks Davis, Lee Eisen,

Nathaniel Wesley Filardo, Richard Grisenthwaite, Alexandre Joan-

nou, Ben Laurie, A. Theodore Markettos, Simon W. Moore, Steven J.

Murdoch, Kyndylan Nienhuis, Robert Norton, Alexander Richard-

son, Peter Rugg, Peter Sewell, Stacey Son, and Hongyan Xia. Ca-

pability Hardware Enhanced RISC Instructions: CHERI Instruction-

Set Architecture (Version 9 - DRAFT). Accessed 2023-04-12. URL:

https://github.com/CTSRD-CHERI/cheri-specification.
[44] Robert N. M. Watson, Peter G. Neumann, Jonathan Woodruff, Michael

Roe, Hesham Almatary, Jonathan Anderson, John Baldwin, Graeme

Barnes, David Chisnall, Jessica Clarke, Brooks Davis, Lee Eisen,

Nathaniel Wesley Filardo, Richard Grisenthwaite, Alexandre Joannou,

Ben Laurie, A. Theodore Markettos, Simon W. Moore, Steven J. Mur-

doch, Kyndylan Nienhuis, Robert Norton, Alexander Richardson, Peter

Rugg, Peter Sewell, Stacey Son, and Hongyan Xia. Capability Hard-

ware Enhanced RISC Instructions: CHERI Instruction-Set Architecture

(Version 8). Technical Report UCAM-CL-TR-951, University of Cam-

bridge, Computer Laboratory, October 2020. URL: https://www.cl.cam.
ac.uk/techreports/UCAM-CL-TR-951.pdf, doi:10.48456/tr-951.

[45] Robert N. M. Watson, Alexander Richardson, Brooks Davis, John

Baldwin, David Chisnall, Jessica Clarke, Nathaniel Filardo, Simon W.

Moore, Edward Napierala, Peter Sewell, and Peter G. Neumann.

CHERI C/C++ Programming Guide. Technical Report UCAM-CL-

TR-947, University of Cambridge, Computer Laboratory, June 2020.

URL: https://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-947.pdf,
doi:10.48456/tr-947.

[46] WG14. Defect report 260, September 2004. http://www.open-std.org/
jtc1/sc22/wg14/www/docs/dr_260.htm.

[47] Jonathan Woodruff, Alexandre Joannou, Hongyan Xia, Anthony Fox,

Robert Norton, Thomas Baureiss, David Chisnall, Brooks Davis, Khilan

Gudka, Nathaniel Wesley Filardo, A. Theodore Markettos, Michael Roe,

Peter G. Neumann, Robert N. M. Watson, and SimonW. Moore. CHERI

Concentrate: Practical Compressed Capabilities. IEEE Transactions on
Computers, 68(10):1455–1469, October 2019. URL: https://www.cl.cam.
ac.uk/research/security/ctsrd/pdfs/2019tc-cheri-concentrate.pdf, doi:
10.1109/TC.2019.2914037.

[48] Jonathan Woodruff, Robert N. M. Watson, David Chisnall, Simon W.

Moore, Jonathan Anderson, Brooks Davis, Ben Laurie, Peter G. Neu-

mann, Robert Norton, and Michael Roe. The CHERI capability model:

Revisiting RISC in an age of risk. In Proc. ISCA, 2014.
[49] Vadim Zaliva, Kayvan Memarian, Ricardo Almeida, Jessica Clarke,

Brooks Davis, Alex Richardson, David Chisnall, Brian Campbell, Ian

Stark, Robert N. M. Watson, and Peter Sewell. CHERI C semantics as

an extension of the ISO C17 standard. Technical Report UCAM-CL-TR-

988, University of Cambridge, Computer Laboratory, 15 JJ Thomson

Avenue, Cambridge CB3 0FD, United Kingdom, phone +44 1223 763500.

URL: https://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-988.html.

https://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-981.pdf
https://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-981.pdf
https://doi.org/10.48456/tr-981
https://doi.org/10.1145/3290380
https://github.com/Microsoft/MSRC-Security-Research/tree/master/presentations/2019_02_BlueHatIL
https://github.com/Microsoft/MSRC-Security-Research/tree/master/presentations/2019_02_BlueHatIL
https://doi.org/10.1145/1542476.1542504
https://doi.org/10.1145/503272.503286
https://doi.org/10.1145/503272.503286
https://arxiv.org/abs/2211.07511
https://arxiv.org/abs/2211.07511
https://doi.org/10.1145/345099.345137
https://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-949.pdf
https://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-949.pdf
https://doi.org/10.48456/tr-949
https://doi.org/10.1007/978-3-030-17138-4_4
https://www.usenix.org/conference/2005-usenix-annual-technical-conference/using-valgrind-detect-undefined-value-errors-bit
https://www.usenix.org/conference/2005-usenix-annual-technical-conference/using-valgrind-detect-undefined-value-errors-bit
https://www.dsbd.tech/
https://www.ukri.org/our-work/our-main-funds/industrial-strategy-challenge-fund/artificial-intelligence-and-data-economy/digital-security-by-design-challenge/
https://www.ukri.org/our-work/our-main-funds/industrial-strategy-challenge-fund/artificial-intelligence-and-data-economy/digital-security-by-design-challenge/
https://www.ukri.org/our-work/our-main-funds/industrial-strategy-challenge-fund/artificial-intelligence-and-data-economy/digital-security-by-design-challenge/
http://www.capabilitieslimited.co.uk/pdfs/20210917-capltd-cheri-desktop-report-version1-FINAL.pdf
http://www.capabilitieslimited.co.uk/pdfs/20210917-capltd-cheri-desktop-report-version1-FINAL.pdf
https://github.com/CTSRD-CHERI/cheri-specification
https://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-951.pdf
https://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-951.pdf
https://doi.org/10.48456/tr-951
https://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-947.pdf
https://doi.org/10.48456/tr-947
http://www.open-std.org/jtc1/sc22/wg14/www/docs/dr_260.htm
http://www.open-std.org/jtc1/sc22/wg14/www/docs/dr_260.htm
https://www.cl.cam.ac.uk/research/security/ctsrd/pdfs/2019tc-cheri-concentrate.pdf
https://www.cl.cam.ac.uk/research/security/ctsrd/pdfs/2019tc-cheri-concentrate.pdf
https://doi.org/10.1109/TC.2019.2914037
https://doi.org/10.1109/TC.2019.2914037
https://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-988.html

	Abstract
	1 Introduction
	2 Background
	2.1 CHERI Architecture
	2.2 C Undefined Behaviour
	2.3 C Memory Object Models and Pointer Provenance

	3 CHERI C Semantics Design Questions
	3.1 Out-of-bounds memory access and undefined behaviour
	3.2 Out-of-bounds pointer construction and representability
	3.3 Pointer/Integer conversions and [language=C, breaklines](u)intptr_t
	3.4 Pointer/Integer type punning
	3.5 Accesses to capability representations
	3.6 Pointer equality
	3.7 Capability derivation in binary arithmetic
	3.8 Sub-object bounds
	3.9 Pointers to const-qualified types and permissions
	3.10 Abstracting capabilities across architectures
	3.11 Capabilities and provenance

	4 CHERI C executable semantics
	4.1 Abstract capabilities
	4.2 Undefined behaviours
	4.3 CHERI C memory object model, in Coq
	4.4 Capability Derivation
	4.5 Intrinsics

	5 Validation and Experimental Comparison
	5.1 Cerberus
	5.2 Clang/LLVM
	5.3 GCC
	5.4 CHERIoT

	6 Related work
	6.1 CHERI C semantics and program analysis
	6.2 Architecture-level memory protection
	6.3 C dialects with added memory safety
	6.4 Memory-safe languages

	7 Conclusion
	A Sample test suite output
	References

