
Constructing an orthonormal set of eigenvectors
for DFT matrix using Gramians and determinants

Vadim Zaliva, lord@crocodile.org

July 17, 2012

Abstract

The problem of constructing an orthogonal set of eigenvectors for a DFT matrix
is well studied. An elegant solution is mentioned by Matveev in [1]. In this paper,
we present a distilled form of his solution including some steps unexplained in his
paper, along with correction of typos and errors using more consistent notation.
Then we compare the computational complexity of his method with the more tra-
ditional method involving direct application of the Gram-Schmidt process. Finally,
we present our implementation of Matveev’s method as a Mathematica module.

1 Definitions
The normalized matrix for discrete Fourier transform (DFT) of size n is defined as:

Φ jk(n) =
1√
n

w jk, j,k = 0, . . . ,n−1, w = ei 2π
n (1)

In some literature, an alternative definition is used where w = e−i 2π
n . It should be

possible to adopt the algorithm described here with some minimal changes.
Throughout this paper, unless explicitly specified, we will use 0-based indices for

matrices and arrays.
The scaling factor 1√

n ensures that Φ is unitary. An important for us property
of a unitary matrix is that its eigenvectors corresponding to different eigenvalues are
orthogonal[2].1

If ek is an eigenvector of Φ with associated eigenvalue λk then by the definition of
an eigenvector Φek = λkek. It is also a property of eigenvectors that Φqek = λ

q
k ek. In

[3] it has been shown that Φ4 = I. This gives us Iek = λ 4ek. From that, it follows that
λ 4

k = 1, and eigenvalues of DFT matrix are fourth roots of unity:

λ = (1, i,−1,−i) (2)

The well known [1, 3] spectral decomposition of Φ into four orthogonal projections
can be defined as:

1There is a typo in [2] stating that they are “orthonormal”, while it should read “orthogonal” or “can be
chosen orthonormal” instead. It has been reported to the author and acknowledged by him.

1

pk =
1
4

3

∑
j=0

(−i) jk
Φ

j, k = 0, . . . ,n−1 (3)

Each projection matrix corresponds to one of four the possible eigenvalues from
equation (2). The columns of each projection matrix are eigenvectors of Φ sharing the
same eigenvalue.

As shown in [3], the multiplicity of the eigenvalue with a value of λk is equal to the
trace of pk. However, we can use simpler formulae from [1] to calculate the multiplicity
of mk:

mo = b
n+1

4
c, associated with λ0 = 1

m1 = b
n+2

4
c, associated with λ1 = i

m2 = b
n+3

4
c−1, associated with λ2 =−1

m3 = b
n
4
c+1, associated with λ3 =−i

(4)

where b. . .c in the equation above denotes the floor function. Note that for conve-
nience, λk is defined so that λk = ik.

Finally, following [1], we define v(m,k), where m,k= 0, . . . ,n−1 as an n-dimensional
vector which is equal to the m-th row (or m-th column due to matrix symmetry) of pk:

v(m,k) = ([pk]0,m, [pk]1,m, . . . , [pk]n−1,m) (5)

In the formula above, [pk]m,n denotes an element at row m and column n of projec-
tion matrix pk. The pk per equation (3) could be expanded as:

pk =
I +(−i)kΦ+(−i)2kΦ2 +(−i)3kΦ3

4
This allows us to write a formula, computing an element of pk at position (j,m).

[pk] j,m =
δ j,m +(−i)k w jm√

(n)
+(−1)kδ(j+m mod n),0 +(−i)3k w− jm√

(n)

4
(6)

Using this, we can express the j-th element of a vector v(m,k) from equation (5) as
v j(m,k) = [pk] j,m.

It should be noted that equation (6) differs slightly from the similar equation (22)
in [1] accounting for a correction. The difference is in the arguments of the second
Kronecker delta, representing Φ2 which has the following form:

Φ
2 =

1 0 · · · 0 0
0 0 · · · 0 1
0 0 · · · 1 0
...

... · · · 0 0
0 1 0 · · · 0

2

According to Matveev’s formula, which incorrectly uses δn− j,m, we get the incor-
rect result:

δn− j,m =

0 0 · · · 0 0
0 0 · · · 0 1
0 0 · · · 1 0
...

... · · · 0 0
0 1 0 · · · 0

This is correct for all elements except the one at (0,0), which should be 1 instead

of 0. The expression δ(j+m mod n),0, which we are using instead, gives us the correct
representation of Φ2. An expression similar to ours is also used in [3].

2 Finding a complete system eigenvectors of Φ(n)

Each projection matrix corresponds to one of four the possible eigenvalues from equa-
tion (2). The columns of each projection matrix are eigenvectors of Φ sharing the same
eigenvalue. A complete set of eigenvectors of Φ spanning Cn could be constructed from
columns of orthogonalized projection matrices taking the first mk non-zero columns of
pk. The first column of p1 and p3 are formed by all zeros and have to be skipped. Thus,
our set of n eigenvectors would consist of:

v(m,0), m = 0,1, . . .m0−1, associated with λ0 = 1
v(m,1), m = 1,2, . . .m1, associated with λ1 = i

v(m,2), m = 0,1, . . .m2−1, associated with λ2 =−1
v(m,3), m = 1,2, . . .m3, associated with λ3 =−i

(7)

with m0 +m1 +m2 +m3 = n. The proof of this using Chebychev sets could be
found in [4].

3 Orthonormalization
Eigenvectors corresponding to different eigenvalues are orthogonal. However, eigen-
vectors within the same projection matrix are not guaranteed to be orthogonal, so the
associated set of eigenvectors does not possess the orthogonality property either.

A straightforward approach to get orthonormal eigenvectors as suggested in Candan[3]
is to apply Gram-Schmidt process to all columns of each projection matrix. Each pro-
jection matrix pk will have rank mk and thus after normalization, the resulting orthonor-
malized vector set will contain exactly mk non-zero vectors.

Matveev in [1] presents another approach to constructing an orthonormal basis
based on the same principles as the Gram-Schmidt process but involving the use of
Gramian matrices and determinants.

3

The calculations of the orthogonal basis of pk involve mk columns of pk taken
according to equation (7). We have two cases: one for odd values of k = 1,3 and one
for even values of k = 0,2. Let us consider the case of even values first.

We can find a sequence of orthogonal vectors (e0(k),e1(k), . . . ,emk−1(k)) spanning
eigenspace pk using Gramian matrices and determinants[5]:

e0(k) = v(0,k),
. . .

e j(k) =

∣∣∣∣∣∣∣∣∣
〈v(0,k),v(0,k)〉 · · · 〈v(0,k),v(j−1,k)〉 v(0,k)

...
...

...
...

〈v(j−1,k),v(0,k)〉 · · · 〈v(j−1,k),v(j−1,k)〉 v(j−1,k)
〈v(j,k),v(0,k)〉 · · · 〈v(j,k),v(j−1,k)〉 v(j,k)

∣∣∣∣∣∣∣∣∣
(8)

In the equation above, 〈v,u〉 denotes the inner product of the vectors v and u. The
determinant notation assumes generic determinant formulation which is defined for
matrices containing mixed scalar and vector entries. The determinant could be calcu-
lated using Laplace (cofactor) expansion.

It has been observed in [1] that pk is in fact a Gramian matrix of a set of vectors
v(m,k),m = 0, . . . ,n− 1, such as [pk] j,m = 〈v(j,k),v(m,k)〉 Using this fact, we can
replace (j+1)× j upper entries of the matrix in equation (8) with corresponding entries
from pk:

e0(k) = v(0,k),
. . .

e j(k) =

∣∣∣∣∣∣∣∣∣
[pk]0,0 · · · [pk]0, j−1 v(0,k)

...
...

...
...

[pk] j−1,0 · · · [pk] j−1, j−1 v(j−1,k)
[pk] j,0 · · · [pk] j, j−1 v(j,k)

∣∣∣∣∣∣∣∣∣
(9)

The resulting system of vectors ek is orthogonal but not yet orthonormal. Each vec-
tor is normalized by dividing by its norm. As shown in [5], the norm can be calculated
by:

‖ei‖=
√

G jG j+1 (10)

where G j,G j+1 are principal minors of pk of respective orders. They represent
Gram determinants.

For k = 1,3, we need to take into account the fact that the first row and the first col-
umn of pk, k = 1,3 contain all zeros. Therefore, for these values of k, the equation (9)
will become:

4

e0(k) = v(1,k),
. . .

e j(k) =

∣∣∣∣∣∣∣∣∣
[pk]1,1 · · · [pk]1, j v(1,k)

...
...

...
...

[pk] j,1 · · · [pk] j, j v(j,k)
[pk] j+1,1 · · · [pk] j+1, j v(j+1,k)

∣∣∣∣∣∣∣∣∣
(11)

and equation (10) will become:

‖ei‖=

√√√√√√
∣∣∣∣∣∣∣
[pk]1,1 · · · [pk]1, j

...
...

...
[pk] j,1 · · · [pk] j, j

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣

[pk]1,1 · · · [pk]1, j+1
...

...
...

[pk] j+1,1 · · · [pk] j+1, j+1

∣∣∣∣∣∣∣ (12)

4 Computational complexity
Because computational complexity of Matveev’s algorithm is very high, it is not very
practical for large n. The complexity is mostly attributed to multiple cofactor expansion
operations which have complexity of O(n!).

For comparison: obtaining a set of non-orthogonal eigenvectors and orthonormal-
izing the set using the Modified Gram-Schmidt process would take just 2n3 floating
point operations (FLOPS)[6] which translates to O(n3) in Big-O notation.

According to the equation (4) for any n, the multiplicities of different projections
could differ at most by 2. That means for a reasonably big n, the dimensionality of
each of the four eigenspaces of Φ is at approximately n

4 .
Using this observation, the performance could be improved further by a factor of

four by applying the Gram-Schmidt process to mk ≈ n
4 vectors from each projection,

which gives us a total cost of n3

4 FLOPS to orthogonalize the complete set of eigenvec-
tors. Although an improvement, this is still O(n3).

5 Mathematica implementation
Listing 1 presents the full source code of the Mathematica module constructing a com-
plete orthonormal set of eigenvectors of DFT matrix Φ(n). It performs all computations
and returns the results in symbolic form. The code intention was to illustrate and val-
idate the algorithm, and clarity and expressiveness were chosen over performance. It
has been developed and tested with Mathematica version 8.

Since Mathematica’s Det function does not work with matrices containing both
scalars and vectors, we have implemented our own function lDet which finds the deter-
minant of any matrix using cofactor expansion across rows. For the same reason, we
must use our own function rowMinor instead of Mathematica’s Minors.

5

Listing 1: Mathematica module source code
1 (∗ : : P a c k a g e : : ∗)
2
3 BeginPackage [” d f t e i g h ‘ ”] ;
4
5 d f t E i g e n : : u s a g e = ” Or thonormal b a s i s o f DFT m a t r i x o f r ank N” ;
6 l D e t : : u s a g e = ” D e t e r m i n a n t u s i n g L a p l a c e e x p a n s i o n ” ;
7 r o w M i n o r : : u s a g e = ”Row minor ” ;
8
9 Begin [” ‘ P r i v a t e ‘ ”]

10
11 C l e a r [rowMinor]
12 rowMinor [m , r] : =Map[Rest , D e l e t e [m, r]]
13
14 C l e a r [l D e t]
15 l D e t [m] : = Module [{ rows } ,
16 rows = Length [m] ;
17 I f [rows == 1 , m[[1 , 1]] ,
18 Sum[(−1) ˆ (1 + r)∗m[[r , 1]]∗ l D e t [rowMinor [m, r]] ,
19 { r , 1 , rows }]]
20]
21
22 C l e a r [d f t E i g e n]
23 d f t E i g e n [n] : = Module [{ m u l t i p l i c i t i e s , v j , e } ,
24
25 m u l t i p l i c i t i e s = { F l o o r [n / 4] + 1 , F l o o r [(n + 1) / 4] ,
26 F l o o r [(n + 2) / 4] , F l o o r [(n + 3) / 4] − 1} ;
27
28 v j [k , j , m] : = (1 / 4) ∗ (
29 K r o n e c k e r D e l t a [j , m] +
30 (−1)ˆ k K r o n e c k e r D e l t a [Mod[j + m, n] , 0] +
31 (− I) ˆ k∗Exp [(2∗ Pi ∗ I ∗ j ∗m) / n] / S q r t [n]+
32 (− I) ˆ (3 ∗ k) Exp [(2∗ Pi ∗ I ∗(− j)∗m) / n] / S q r t [n]
33) ;
34
35 e [j , k] : = Module [{ g , gv , z , xn , d0 , d1 } ,
36 z= I f [OddQ[k] , 1 , 0] ;
37 I f [j ==0 , Tab le [v j [k , y , z] ,{ y , 0 , n−1}] / S q r t [v j [k ,0+ z ,0+ z]] ,
38 g= Tab le [v j [k , y , x] ,{ x , z , j +z } ,{y , z , j +z−1}] ;
39 gv= Tab le [{ Tab le [v j [k , y , x] ,{ y , 0 , n−1}]} ,{x , z , j +z }] ;
40 d0=Det [Tab le [v j [k , y , x] ,{ x , z , j +z } ,{y , z , j +z }]] ;
41 d1=Det [Tab le [v j [k , y , x] ,{ x , z , j +z−1} ,{y , z , j +z−1}]] ;
42 l D e t [J o i n [g , gv , 2]] / S q r t [d0∗d1]
43]
44] ;
45
46 Map[e [# [[1]] , # [[2]]] &,
47 F l a t t e n [Tab le [T r a n s p o s e [{Range [0 , m u l t i p l i c i t i e s [[m+1]]−1] ,
48 C o n s t a n t A r r a y [m, m u l t i p l i c i t i e s [[m+ 1]]] }] , {m, 0 , 3 }] , 1]]

6

49]
50
51 End [] ;
52 EndPackage [] ;

6 Examples
Using the Mathematica code above, we can calculate a set of eigenvectors for a DFT
matrix of order 6. Combining them as columns of matrix O gives the following matrix,
approximated numerically:

O6 =

0.8391 0. 0. 0.5439 0. 0.
0.2433 0.5412 0.6533 −0.3753 0.0843 0.2706
0.2433 −0.2979 0.2706 −0.3753 −0.4596 −0.6533
0.2433 −0.4865 0. −0.3753 0.7505 0.
0.2433 −0.2979 −0.2706 −0.3753 −0.4596 0.6533
0.2433 0.5412 −0.6533 −0.3753 0.0843 −0.2706

We can verify that it diagonalizes Φ(6) by calculating:

O−1
6 Φ(6)O6 =

1 0 0 0 0 0
0 1 0 0 0 0
0 0 i 0 0 0
0 0 0 −1 0 0
0 0 0 0 −1 0
0 0 0 0 0 −i

The diagonal contains eigenvalues repeating consistently with the associated mul-

tiplicities m = (2,1,2,1) and dimensions of the eigenspaces.
Taking the outer product of all columns of O6 we can confirm that the set is indeed

orthonormal:
1. 0. 0. 0. 0. 0.
0. 1. 0. 0. 0. 0.
0. 0. 1. 0. 0. 0.
0. 0. 0. 1. 0. 0.
0. 0. 0. 0. 1. 0.
0. 0. 0. 0. 0. 1.

The Mathematica notebook, used to make calculations in the example above was:

Needs[“dfteigh̀”,ToFileName[NotebookDirectory[],“dfteigh.m”]];

n = 6;

Φ = Table
[

1√
n Exp

[2π∗i∗k∗m
n

]
,{k,0,n−1},{m,0,n−1}

]
;

7

eall = dftEigen[n];

o = N[Transpose[eall]];MatrixForm[Round[o,0.0001]];

MatrixForm[Round[o,0.0001]]

MatrixForm
[
Round

[
Inverse[o].N[Φ].o,10−10

]]
MatrixForm[N[FullSimplify[Outer[Dot,eall,eall,1]]]]

7 Acknowledgements
I would like to thank Lester F. Ludwig from the New Renaissance Institute who sug-
gested this problem to me and who has also provided guidance, inspiration, and sug-
gestions.

References
[1] Vladimir B Matveev. Interwining relations between the fourier transfom and dis-

crete fourier transform, the related functional identities and beyond. Inverse Prob-
lems, 17:633, 2001.

[2] G. Strang. Linear Algebra and Its Applications. Thomson, Brooks/Cole, fourth
edition, 2006.

[3] Ç. Candan. On the eigenstructure of DFT matrices [DSP education]. Signal Pro-
cessing Magazine, IEEE, 28(2):105–108, 2011.

[4] J McClellan and T Parks. Eigenvalue and eigenvector decomposition of the discrete
fourier transform, 1972.

[5] F R Gantmakher. The Theory of Matrices. Chelsea Publishing Co., 1959.

[6] G.H. Golub and C.F. Van Loan. Matrix computations, volume 3. Johns Hopkins
Univ Pr, 1996.

8

	Definitions
	Finding a complete system eigenvectors of (n)
	Orthonormalization
	Computational complexity
	Mathematica implementation
	Examples
	Acknowledgements

