
Research Report: Formally-Verified ASN.1 Protocol
C-language Stack

Nika Pona
Digamma.ai

npona@digamma.ai

Vadim Zaliva
Carnegie Mellon University

Department of Electrical and Computer Engineering

vzaliva@cmu.edu

Abstract—We describe our approach and progress in verifi-
cation of a mature open-source ASN.1 compiler, ASN1C, using
the Coq proof assistant. Once completed, our project will pro-
vide state-of-the-art high assurance suitable for mission-critical
systems. Furthermore, since formal verification will be layered
atop a well-tested ASN.1 stack, it will combine the benefits of
high-performance portable stack implementation with formal
correctness guarantees. As an essential step in our approach,
the project will also provide a formalization of a key part of the
ASN.1 standard. Such formal specification could subsequently be
used by others to analyze ASN.1 properties and validate other
implementations.

I. INTRODUCTION

A. Background

The ASN.1 (Abstract Syntax Notation One) [1] joint stan-
dard of the International Telecommunication Union (ITU-
T) and the International Organization for Standardization
(ISO/IEC) provides an essential interface description lan-
guage for defining data structures for serialization and de-
serialization in cross-platform data exchange. ASN.1 is vitally
relied upon by core aspects of the Internet infrastructure and
Internet applications, such as telephony, enterprise comput-
ing, utilities, finance, military, security, digitally-controlled in-
frastructure, transportation, medical systems, and commercial
cloud computing.

Using ASN.1 language, one can define data structures that
use ASN.1 primitive types, such as INTEGER, BOOLEAN,
OBJECT IDENTIFIER, and constructed types, such as SE-
QUENCE (OF), SET (OF), and CHOICE (OF). An exam-
ple ASN.1 module that describes an X.509-like public key
certificate is shown in Listing 1 (revised for brevity). Such
certificates, for example, are used by every browser to access
HTTPS web sites. The unabridged version of the original
ASN.1 definition for the X.509 standard takes about 1,000
lines of ASN.1.

Listing 1: ASN.1 example of X.509 certificates
X509 DEFINITIONS ::= BEGIN

Certificate ::= SEQUENCE {
tbsCertificate TBSCertificate,
signatureAlgorithm AlgorithmIdentifier,
signature BIT STRING

}

TBSCertificate ::= SEQUENCE {
version [0] INTEGER,
serialNumber INTEGER,
signature AlgorithmIdentifier,
issuer Name,
subject Name,
subjectPublicKeyInfo SubjectPublicKeyInfo,

}

SubjectPubicKeyInfo ::= SEQUENCE {
algorithm AlgorithmIdentifier,
subjectPublicKey BIT STRING

}

AlgorithmIdentifier ::= SEQUENCE {
algorithm OBJECT IDENTIFIER

}

Name ::= SEQUENCE OF SET OF SEQUENCE {
type OBJECT IDENTIFIER,
value ANY DEFINED BY type

}

END

A typical ASN.1 stack consists of a compiler which parses
ASN.1 syntax definitions, as shown in the Listing 1, and
produces either a source code of a specialized protocol en-
coder/decoder for this data or a run-time data for a parametric
protocol encoder/decoder.

B. Motivation

These days, embedded and user computing devices imple-
ment increasingly vast numbers of essential functions and
applications, many of which exchange data using ASN.1. The
ASN.1 standard is large and complex: it currently comprises
twelve sub-standards spanning 862 pages supplemented by
additional pages of corrigenda. This opens a door for many
potential software bugs and malicious exploits. As a result,
the interconnected communicating systems are becoming less
stable and less reliable, posing greater risks and potential
dangers. Disruption of the ASN.1 based communications could
threaten the functioning of the entire critical infrastructure our
society relies upon.

The Computer Vulnerabilities and Exposures (CVE)
database [2] lists critical ASN.1-related bugs that are found
each year in the existing systems. Noteworthy exposures have

already been discovered [3] that clearly illuminate potential
vast risk and exposure. We analyzed the last four years of
ASN.1-related issues reported in the CVE database1. Among
the vulnerabilities studied are CVEs for various software
and hardware products and vendors, including Apple, axTLS,
Botan, Bounty Castle, librcrypto++, libtasn, LibTomCrypt,
Linux Kernel, MatrixSSL, Mozilla NSS (Firefox), Objective
Systems, OpenSSL, PolarSSL, RSA BSAFE, Samba, Samsung,
Snapdragon, strongSwan, and Wireshark. Out of 52 problems
analyzed, 39 are related to memory safety, 6 related to
stack and heap bounds checking, and 3 are related to issues
caused by applications accepting poorly formed ASN.1 input.
Proving just following six formal properties can prevent 49
out of 52 vulnerabilities, which is more than 90% of reported
vulnerabilities:

1) Absence of read memory access violations (reading from
memory locations outside of a permitted range).

2) Absence of write memory access violations (writing to
memory locations outside of a permitted range).

3) Strict standard compliance (detecting not well-formed
input)

4) Guaranteed parser program termination
5) Guaranteed bounds on stack size
6) Guaranteed bounds on heap size

C. Our approach

To date, the relevant systems and methods are either (a)
automatically tested but not formally verified, (b) use veri-
fication approaches which rely on automatic extraction from
executable specifications (for example involving network stack
synthesis [4], optimizing compilers [5], cryptographic libraries
[6], and encoder/decoders [7]), or (c) apply a form of formal
verification which only proves partial correctness properties
(partial verification of NAT stack proving that only parts of
DPDK are specification compliant [8], partial verification of
Linux kernel TCP implementation with 55% line coverage and
92% protocol coverage [9]). Consequently, (a) and (c) do not
provide sufficient correctness guarantees, while (b) is often
impractical due to poor performance and compatibility limita-
tions. In contrast, we pursue a far deeper and comprehensive
verification approach to performance and portability and seek
to prove actual industrial-level C-code implementation.

As shown in Figure 1, the project begins with ITU-T
standard document in the form of human-readable text. We
manually convert it into formal specification (H.spec). This is
high-level specification (in Coq) which describes the corre-
spondence between data types and packet octets data layout.
This specification is one of the outputs of this project and has
a value of its own.

The next level of refinement is executable specification
(E.spec). Also written in Coq, it declares “encoder” and
“decoder” for each type as a pair of pure functions and
basically abstracts the encoding/decoding algorithm used in
the C function and operates on abstract types such as Coq

1See Appendix B for more details.

Hoare & Separation logics

Clightgen

Extraction

QuickChick Executable Spec

High-level Spec

ASN.1 Standard

VST Spec

C.AST

C

Memory safety,
Heap & Stack Bounds

Ocaml, Haskell

Roundtrip Property,
Standard Compliance

Fig. 1: Verification Architecture

integers and lists of bytes. We prove that the E.spec encodes
and decodes bytes in conformance with the high-level speci-
fication. Moreover, we prove the roundtrip property for each
encoder/decoder pair.

From E.spec we can extract a fully functional encoder/de-
coder program in languages supported by the Coq extraction
mechanism (e.g. OCaml or Haskell) [10]. Such a possibility
is shown in the box on the right in Figure 1, although we
do not plan to pursue it yet. However it could be explored
in the future, for example, in case we need to generate an
ASN.1 stack for special platforms where OCaml code opens
some additional opportunities for parallelization, optimization,
or integration. One example of such platforms could be
MirageOS [11], which is an OCaml-based unikernel.

The box at the left, marked QuickChick, represents another
possibility we might not pursue immediately. It uses random-
ized property-based automated testing based on an executable
specification to further verify its correctness. This work could
be done using QuickChick [12] in Coq. It could also be used
to generate a test-suite for the extracted code.

The next level is VST specification (VST.spec). VST stands
for Verified Software Toolchain [13], a tool that that formalizes
separation logic in Coq using operational C semantics from
CompCert. It provides uniform syntax for stating pre- and
postconditions of imperative programs execution, as well as
tactics that automatize machine arithmetic and sepratation
logic proofs. VST.spec states that the C program terminates
and returns the machine representation of the value man-
dated by E.spec and that it satisfies the memory specification
consisting of pre- and post-conditions written in separation
logic. Correspondence to the memory specification guarantees
memory safety. Further, we can add post-conditions about heap
and stack bounds.

At the bottom of Figure 1 is a box labeled “C” which
represents the existing C code of the ASN1C compiler. Using
an automated conversion provided by the clightgen tool
within the CompCert C compiler [5], we convert this to

2

Abstract Syntax Trees (AST) (labeled “C.AST” in Figure 1)
rendered from a subset of C-language, called Clight [14],
which is recognized by Coq. More specifically, CompCert
converts C “concrete syntax” to “abstract” Clight syntax. The
resulting Clight program is just a reification of the original C
program in Coq, retaining its overall structure; Clight is further
assigned formal semantics by CompCert that can be used to
further reason about the behaviour of programs within Coq.

Finally, as the most critical (and laborious) step of the
project, we prove that semantics of Clight translation for
each given function correspond to its VST specification. This
guarantees that the C program terminates, is memory safe and
behaves exactly like the executable and hence the high-level
specification.

We perform all the proofs using the Coq Proof Assistant
[15]. From the proofs Coq can generate a “certificate,” which
is a program in a formal language based on the Calculus of
Inductive Constructions (“CIC”) [16]. The certificate allows
3rd party validation of proofs which have been developed
in Coq. The CIC is a small and mathematically well-defined
formal language that serves as the underlying formal system of
Coq. The generated certificate is automatically validated by the
relatively small Coq kernel. Although a fraudulent certificate
could hypothetically be created, it would not pass validation
when submitted to the Coq kernel. The resulting outcome
limits the trust need to rely only on the small CIC formal
language and the small Coq kernel.

Additionally, our (modified) version of ASN1C could be
compiled with the certified CompCert compiler [5] to extend
correctness guarantees through all levels down to machine
code. This will provide state-of-the-art high assurance suitable
for mission-critical systems. Further, since formal verification
will be layered atop of a widely used ASN.1 stack, it could be
offered to current users immediately. This makes it attractive
to new users who require higher assurance levels than current
non-verified implementations provide.

II. PRELIMINARY WORK

Before committing ourselves to this project, we performed
some initial exploratory work to try different validation ap-
proaches, evaluate tools and libraries, and estimate effort
required. Briefly summarized below are the results of some
of the work we performed.

A. Verifying floating-point numbers encoding

As a first estimate of the difficulties associated with veri-
fying ASN.1-related programs, we wrote formal specification
of an encoder-decoder pair for a small but particularly error-
prone subset of the standard – floating-point numbers. The de-
velopment is available on github [17]. Our first approach was
relatively straightforward: define types representing ASN.1-
encoded data in Coq, provide functions for converting between
representations, and prove that they operate correctly. In
particular, we proved the roundtrip property for the defined
encoders/decoders (i.e. the decoder is the inverse of the
encoder).

Although providing guarantees of correctness, this tech-
nique has major disadvantages. First of all, our definitions,
being written in pure Coq, have only one connection to the real
world - through automatic code extraction. This immediately
creates a set of problems:

• Automatic code extraction from Coq is not formally
verified.

• Extracted code generally runs much slower than its coun-
terparts implemented in other languages2.

• Extracted code might not be compatible with other code
or viable in some real-world use-case scenarios.

However, this exploration allowed us to home in on what
approaches to verification are viable and improve our effort
estimates. Moreover, we tested specification and proving tech-
niques which will be useful for future experimentation.

B. Verifying simple ASN1C function

To estimate the effort required to formally verify C code and
to experiment with various verification strategies, we decided
to try to verify a small function from an existing ASN.1
compiler. We chose function asn_strtoimax_lim from
the ASN1C compiler. XER decoding functions for INTEGER,
OBJECT-IDENTIFIER, and RELATIVE-OID types (and hence
all constructed types that use these primitive types) critically
depend on this function. The function is relatively simple but at
the same time, it uses many features of C that make verifying
imperative programs challenging.

The only specification was the following comment in the
source code:

Parse the number in the given string until the given
*end position, returning the position after the last
parsed character using the same (*end) pointer.
WARNING: This behavior is different from the stan-
dard strtol/strtoimax(3).

Additional specification details must be inferred from the
source code and usage examples. Full source code of the
function is included in Appendix A.

1) Problems discovered: Despite that fact that this function
lineage could be traced back 15 years and that it is part of
mature, well-tested ASN.1 compiler presently used in many
production systems, we found three bugs or problems in the
current implementation. These had never been reported before
and had passed all human code reviews as well as unit and
fuzzying tests.

a) Negative range bug: When we go beyond the allowed
integer range, an incorrect result is given for some inputs. For
example, assuming we are working on an 8-bit system and the
maximum signed integer (MAX_INT) value is 127, parsing the
input string “-1281” is successful and returns the value -127
instead of the expected range error message. This happens
whenever the input string represents a number smaller than
MIN_INT, due to the fact that its absolute value is greater
than MAX_INT, thus the negative number cannot be treated

2The extracted code performed 15 times slower than the ASN1C.

3

as a value × sign when the value is represented as integer.
This bug was reported and promptly fixed by developers.

b) Problem with pointer aliasing: Another bug we dis-
covered was related to potentially overlapping memory areas
pointed by argument pointers. Under some circumstances, the
value of the end pointer parameter is treated as a part of the
input data, and the resulting error value could be incorrect.
This bug would never occur if the function is always called
with non-overlapping pointer arguments. However this may be
viewed as an implicit pre-condition which should be part of
the function’s specification.

c) Specification ambiguity: After addressing the two
bugs we discovered, we were able to successfully verify that
the function finally corresponds to the specification we wrote
for it. However, the following behavior was noticed; for input
“a”, it records the value 0 (the same behaviour as for input
“0”) and returns the EXTRA_DATA error message (the same
behaviour as for input “0a”), which was probably unintended.

2) Direct operational semantics proof: First we formulated
functional correctness and proved it using big-step operational
semantics of C light, defined in CompCert. In this proof, we
used pure-function re-implementation in Coq as an intermedi-
ate specification.

This function took addresses as inputs and operated on
memory using load and store operations from CompCert’s
memory model, while calculating the resulting machine integer
value. The proof went by induction on the distance between
input pointers and the main difficulty apart from trying to
prove a faulty program (that’s when we discovered two bugs)
was operational semantics control flow minutiae and machine
arithmetic proofs. However, only a couple of lemmas about
the specification were needed, and proofs of different cases
were very repetitive. Since functional and memory specifi-
cation were intertangled, it was more difficult to read the
specification and make sure it was correct. Hence, we missed
the specification “bug” mentioned above.

3) Proof using VST: The Verified Software Toolchain offers
solutions to problems we encountered while doing direct oper-
ational semantics proof; it has good automation of control flow,
some automation for machine arithmetic, and clear separation
of functional and memory-related parts of the specification. It
also provides a uniform way of stating functional correctness
and memory safety, which reduces the chances of having the
wrong specification. Proofs here are done using separation
logic implemented in Coq, which are proven to be sound
with respect to operational semantics of CompCert. Similarly
as before, we rely on C light syntax and semantics. VST
has tactics that can solve simple entailments in these logics.
However, they are not powerful enough to significantly reduce
the overall proof effort. In fact, with respect to memory
safety specifications, direct operational semantics proof were
shorter and more straightforward. However, this problem can
be solved by improving the existing tactics and fine-tuning the
specification style, so in the end we find this approach more
viable for a large project.

In this simple example, we test our architecture from
Section I-C. First, we write a high-level specification of
this function in declarative, relational style (H.spec). Each
constructor corresponds to a return message (state) and stores
a value and the number of iterations of the function (used to
store the result in memory). Such specification can be easily
examined and refined.

(* Relation between input string, value,
index an asn_strtox_result_e error message *)
Inductive asn_strtoimax_lim : list byte → Z →

Z → asn_strtox_result_e → Prop :=
(* Invalid data encountered *)
| ERROR_INVAL:

asn_strtoimax_lim nil 0 0 ERROR_INVAL
(* More data expected (e.g. "+") *)
| EXPECT_MORE : ∀ ls c,

ls = [c] →
is_sign c = true →
asn_strtoimax_lim ls 0 1 EXPECT_MORE

(* Non-digit encountered *)
| EXTRA_DATA : ∀ c ls z i,

asn_strtoimax_lim ls z i OK →
is_digit c = false →
asn_strtoimax_lim (ls ++[c]) z i EXTRA_DATA

...

The next level is the executable specification
Z_of_string (E.spec), which we prove to be equivalent
to the relational specification. However, it could be extracted
to Coq and is easier to use in future proofs of semantic
equivalence with C code. Here, we experiment with two
approaches. The function Z_of_string can serve as a
functional specification for asn_strtoimax_lim and
differs little from the relational specification.

Fixpoint Z_of_string_loop (s : list byte)
(val i : Z) (b : B) :=

match s with
| [] ⇒ {| OK; val; i |}
| c :: tl ⇒
if is_digit c
then let val’ := app_char b val c in

if bounded val’
then Z_of_string_loop tl val’ (i + 1) b
else {| ERROR_RANGE; val’; i; |}

else {| EXTRA_DATA; val; i; |}
end.

Definition app_char (b : B) v c :=
if b then v ∗ 10 + (Z_of_char c)

else v ∗ 10 − (Z_of_char c).

Since Z_of_string has a different structure from the C
implementation, the proof requires many lemmas to connect
functional specification to the C code and complicate the
loop invariant. It is more effective to separate the functional
aspect of the proof from the C-proof as much as possible
to allow for more automation in the proof of C function
correctness. Thus, we define another intermediate specifi-
cation Z_of_string_C, which is basically functional re-
implementation of the C function, like the one used in the

4

operational semantics proof but without mention of memory
or machine integers. Then, we prove that Z_of_string_C
is equivalent to Z_of_string, which is a simple func-
tional correctness proof that allows eliminating the need for
additional lemmas in the C proof that connect the abstract
specification with the C code structure.

Fixpoint Z_of_string_loop_C (s : list byte)
(val i : Z) (b : B) :=

match s with
| [] ⇒ {| OK; val; i |}
| c :: tl ⇒
if is_digit c
then let d := (Z_of_char c) in

let val’ := val∗10 + d in
if v <? upper_boundary
then Z_of_string_loop_C tl val’ (i + 1) b
else if (v =? upper_boundary)

&&(d <=? (last_digit_max b))
then match tl with

| [] ⇒ {| OK; val’; (i + 1) |}
| c :: tl ⇒
if is_digit c
then {| ERROR_RANGE;

app_char b val’ c;
(i + 1) |}

else {| EXTRA_DATA;
val’;
(i + 1) |}

end
else {| ERROR_RANGE; val’; i |}

else {| EXTRA_DATA ; val; i |}
end.

We then wrote two VST specifications: one that uses the
high-level specification and one that uses executable specifi-
cation to state functional correctness. Memory specification
for the function is expressed in terms of special memory or
spatial predicates. For instance, the predicate (data_at t
ls p) states that at the address p there is content ls of type
t. One can combine such predicates with usual propositional
connectives or with separation conjunction (here written as
;). Intuitively, if P and Q are spatial predicates, p and q
are pointers, then (P(p) ; Q(q)) means that P(p) and
Q(q) are true in separate sub-heaps of the memory or, in
other words, that the pointers p and q don’t overlap. Since
we compare pointers between str and *end in the body
of the function, we also have to ensure that they are valid
pointers according to the C standard, are comparable (i.e. point
within the same object), and non-overlapping. For instance,
the memory precondition for the function will now have the
following form:

PRE ((* str and *end are valid pointers *)
valid_pointer ∗end; valid_pointer str ;
(* str points to contents
ls of type char array *)
data_at (array char) ls str ;
(* end points to end’ *)
data_at (ptr char) ∗end end;
(* intp points to some value v *)
data_at long v intp)

Moreover, the post-condition will record the changes in
memory. We then prove that, given the precondition and after
the execution of asn_strtoimax_lim, the post-condition
will hold.

POST((* the fist four lines of the precondition
didn’t change after execution *)

...
let r := result (Z_of_string ls) in
(* in 3 cases intp stays unchanged,
otherwise store the end value
of Z_of_string *)

match r with
| ERROR_RANGE
| ERROR_INVAL
| EXPECT_MORE ⇒
data_at long v intp
| _ ⇒ data_at long

(value (Z_of_string ls))
intp

end ;
(* if str >= end, end doesn’t change,

otherwise store the address of the last
char read (before going out of range,
reading extra data

or success) *)
let i := index (Z_of_string ls) in
if str <? ∗end
then data_at (ptr char) (str + i) ∗end
else data_at (ptr char) ∗end end).

Given experiments on this example, we delineated our
strategy for proving ASN1C correctness as described in Section
I-C.

III. PROJECT SCOPE AND PLAN

The International Telecommunications Union X.509 stan-
dard [18] defines the format of public key certificates used in
many cryptographic Internet protocols (including TLS/SSL,
the basis for HTTPS protocol for secure browsing the web),
certificate revocation lists, certification path validation, elec-
tronic signatures, and many other essential applications. X.509
is based on ASN.1, using an important subset (Distinguished
Encoding Rules, “DER”) of ASN.1 [19] [20].

To limit the scope of the initial stage of the project while
exercising and showcasing all features of the complete ASN.1
standard, we focus the detailed verification on the DER part,
which can immediately be used to implement verified X.509
stacks for use in production applications.

The ASN1C compiler supports BER, DER, CER, XER, PER
and OER encoding/decoding rules. The total backend code
is around 21,000 lines of code. We estimated X.509 related
part to be around 3,000 lines of code. To compare, it took 18
person-years to write and verify 8,700 lines of code of sel4,
a formally verified operating-system kernel [4]. This gives
us a conservative estimate of 6 person-years for this project.
However, in the aforementioned project most of the time was
used to develop technologies that are already available in the
Coq community (formal semantics of C, some automation
for machine integer arithmetic and separation logic proofs in
VST).

5

The X.509 focus provides a setting to answer after com-
pletion of the 1st stage essentially all questions to deter-
mine the technical feasibility of the proposed concept of
full ASN.1 stack verification. These questions include the
following points:

1) How ASN1C source code needs to be refactored to make
it suitable for verification. In particular:

a) Which features of general C-language unsupported by
CompCert’s C language semantics need to be avoided?

b) Are there any code organization changes which will
aid structuring proofs (for example to make it easier to
relate each function to a corresponding lemma)?

c) Are there any simplifications which could be done
to ASN1C code by removing rarely used or obscure
features that will make it easier to verify?

d) Since the ASN1C code base dates back more than a
decade, are there are any low-level manual optimiza-
tions that could be eliminated by a combination of
modern compilers and hardware that can handle them
as well?

2) What high-level properties can be proven which will
translate into additional code safety guarantees?

3) How should formalization of ASN.1 standard in Coq be
written? - i.e. How to balance clarity, readability, and
comprehensiveness?

4) How many of the proving steps could be automated and
how can these automations speed up the proof process?
Can they be used to estimate the effort required to prove
the remainder of the ASN.1 stack?

5) How many of the proving methodologies and tools de-
veloped during the first phase could be re-used to prove
similar software and other protocols?

6) Are executable specifications of encoders/decoders com-
pletely sufficient to “extract” a working skeleton of the
ASN.1 stack in OCaml? How much of additional “glue”
code needs to be written to transform the result into
a working product? How do code size and the perfor-
mance of such extracted stack compare to the original
C-language implementation from ASN1C?

To address these questions determining the technical fea-
sibility of our proposed concept, we defined key tasks and
objectives:
Task 1 Formalization of X.509-Relevant Parts of ASN.1

Specification
Task 2 Refactoring of the ASN1C C Code Implementation of

ASN.1
Task 3 Primitive and Constructed Type Verification
Task 4 Proof of Additional High-Level Properties
Task 5 Code Extraction from Execution Specification
Task 6 Final Code, Associated Documentation, Estimates of

Additional Work

IV. PROJECT STATUS

Now, we are working in parallel on the high-level specifica-
tion of the standard and executable specification of the ASN1C

encoders/decoders, while recording changes that should be
made to the C code.

We start by formalizing BER and DER encoding rules for
several primitive and constructed types in relational style. Each
premise of a constructor formalizes (part of) a paragraph in
the standard. E.g., for boolean type:

Inductive DER_Bool : B→ list byte → Prop :=
| False_Bool_DER : (* 8.2.2 *)

DER_Bool false [all_zero]
| True_Bool_DER : (* 11.1 *)

DER_Bool true [all_one].

Then we use our primitive type specifications to formalize
DER relation for each type using predicates about length and
tags. The formalization is first-order, thus it can be easily
translated to other languages than Coq. Moreover, the relation
to the text is straightforward, which will ease its inspection
and validation.

Inductive DER : asn_value → list byte → Prop :=
| Bool_DER b t v:

PrimitiveTag t → (* 8.2.1 *)
DER_Bool b v →
DER (BOOLEAN b) (t ++[Byte.one] ++v)

| Integer_short_DER t v z :
PrimitiveTag t → (* 8.3.1 *)
length v = 1 → (* 8.3.2, case 1 *)
DER_Integer z v →
DER (INTEGER z) (t ++[Byte.one] ++v)

| Integer_long_DER t l v z:
PrimitiveTag t → (* 8.3.1 *)
DefiniteLength (length v) l → (* 10.1 *)
1 < length v → (* 8.3.2, case 2 *)
v [1] != all_one → (* 8.3.2, (a) *)
get_bit 7 v[1] = 1 → (* 8.3.2, (b) *)
DER_Integer z v →
DER (INTEGER z) (t ++l ++v)
...

We write executable specification that is close to the actual
implementation, since we have to keep in mind the future proof
effort, especially with respect to the C code. This involves
devising structures and functions that are easily translatable to
their C counterparts.

The ASN1C compiler has a modular structure, so we can
proceed with verification in a modular way by exploiting
this structure. From a high-level view, the ASN1C compiler
consists of the library of primitive type decoders (INTEGER,
BOOLEAN, FLOATING POINT, etc.). Each of these can be
verified with respect to its ASN.1 specification. Our previous
work on floating point numbers is an example of this. We start
with the simplest types; we write the executable specification
that corresponds to the C function; and then check it with
respect to the specification. Even for the simplest boolean type,
we find that the decoder was not behaving according to the
standard; in particular, several encodings for boolean values
were possible, which clearly violates the ASN.1 standard for
DER encoding/decoding.

6

Furthermore, the compiler contains functions that
decode/encode constructed types (such as SEQUENCE,
CHOICE, SET). Then, from a given ASN.1 type definition,
the ASN1C compiler produces an internal representation
of that type, specifying which existing decoders/encoders
to apply and in which order, as well as the output/input
C structures for the functions. In Coq, these internal
representations correspond to trees with nodes labelled by the
type’s tags and decoder/encoder types.

Inductive decoder_type := BOOLEAN | INTEGER ...

Inductive TYPE_descriptor :=
DEF { tags : list Z;

decoder : decoder_type;
elements : list TYPE_descriptor
}.

Then, a constructed type decoder has type
TYPE_descriptor → list byte → option asn_value

and traverses the tree and applies the respective primitive
decoders (this is a simplified definition; in the actual
implementation, we use stream monad for input and monadic
error handling). In ASN1C, the decoder is implemented as
a recursive function that readily translates into a nested or
mutually recursive function in Coq.

Given a particular ASN.1 type definition that translates
into a TYPE_descriptor, the decoder function for that
particular type corresponds to a transition system with states
where primitive decoders are called. Hence, one of the ways
we can formalize the compiler is as a function that creates
a transition system from a given ASN.1 type definition or
TYPE_descriptor tree. Since the run of the recursive
decoder function corresponds to the transition system, we
can use this model in the proof of implementation correctness.

The decoder function could also be viewed in
terms of a sequence parser combinator, known from the
monadic parser combinators approach [21]. Given decoders
p1, p2 : decoder asn_value for primitive functions, it is
possible to add an operator seq that takes two decoders and
applies them sequentially seq p1 p2. Then the compiler can
be seen as producing the concrete combination of parsers given
the TYPE_descriptor. Currently, we are experimenting

with these approaches.

V. RELATED WORK

Microsoft’s EverParse project [22] is the closest to what we
do. However, they don’t verify the existing protocol stack but
build their own. They define their own input language which
accepts C-like type definitions, which automatically generate
specifications, their implementations, and proofs of correct-
ness. This is possible because the produced decoders are com-
binations of existing parsers that are proved correct in F*. They
follow the tradition of parser combinators. Starting with prim-
itive parser combinators fail, return[x], read_byte,
and monadic composition of two parsers and_then, one can
define combinators for parsing of pairs, mapping of functions
on parser results, filtering of parser results etc. For each
combinator there are two implementations: functional and C-
like. C-like implementation is written in a subset of F* that
models imperative language, called Low*. Functions written in
Low* operate on memory addresses and use machine integer
formalization. They rely on automatic extraction from Low*
to C using the tool Kremlin.

The project Narcissus [7] also constructs correct binary
parsers from a verified library of combinators written in
Coq, but it generates only functional parsers and has the
same disadvantages as our preliminary work on floating-point
parsing. Built on Narcissus, there is a verified compiler in Coq
for parsers and formatters specified by Protocol Buffers.

Galois, Inc. did some work on ASN.1 verification in the past
(circa 2012) [23]. It appears that they abandoned the goal of
full ASN.1 verification [24] that we pursue in our project with
our more pragmatic approach; Galois is now only exploring
a limited subset ASN.1 verification adequate for the “vehicle-
to-vehicle” (V2V) market [25], but that particular subset has
limited applicability, and their effort is limited by constraints
of their chosen approach.

The project is in active development right now, but given
the ambitious scope a significant effort is required for it’s
completion. While Digamma.ai is committed to sponsor the
initial stage of the project, we are currently looking for
industry and academic partners to join us in the full ASN.1
verification endeavor.

7

APPENDIX

A. asn strtoimax lim source

enum asn_strtox_result_e
asn_strtoimax_lim(const char *str, const char **end, intmax_t *intp) {

int sign = 1;
intmax_t value;

#define ASN1_INTMAX_MAX ((˜(uintmax_t)0) >> 1)
const intmax_t upper_boundary = ASN1_INTMAX_MAX / 10;

intmax_t last_digit_max = ASN1_INTMAX_MAX % 10;
#undef ASN1_INTMAX_MAX

if(str >= *end) return ASN_STRTOX_ERROR_INVAL;

switch(*str) {
case ’-’:

last_digit_max++;
sign = -1;
/* FALL THROUGH */

case ’+’:
str++;
if(str >= *end) {

*end = str;
return ASN_STRTOX_EXPECT_MORE;

}
}

for(value = 0; str < (*end); str++) {
switch(*str) {
case 0x30: case 0x31: case 0x32: case 0x33: case 0x34:
case 0x35: case 0x36: case 0x37: case 0x38: case 0x39: {

int d = *str - ’0’;
if(value < upper_boundary) {

value = value * 10 + d;
} else if(value == upper_boundary) {

if(d <= last_digit_max) {
if(sign > 0) {
value = value * 10 + d;

} else {
sign = 1;
value = -value * 10 - d;

}
} else {
*end = str;
return ASN_STRTOX_ERROR_RANGE;

}
} else {

*end = str;
return ASN_STRTOX_ERROR_RANGE;

}
}

continue;
default:

*end = str;
*intp = sign * value;
return ASN_STRTOX_EXTRA_DATA;

}
}
*end = str;
*intp = sign * value;
return ASN_STRTOX_OK;

}

8

B. ASN.1 Vulnerabilities Analysis

CVE Product Property violated Description
2015-7061 Apple *OS Memory safety (write) remote attackers to execute arbitrary code or cause a denial of

service (memory corruption) via a crafted certificate
2015-7060 Apple *OS Memory safety (write) denial of service (memory corruption) via a crafted certificate
2015-7059 Apple *OS Memory safety (write) denial of service (memory corruption) via a crafted certificate
2018-16253 axTLS Parsing only well-formed input X.509 metadata verification
2018-16149 axTLS Memory safety (read) blindly trusts the declared lengths in the ASN.1 structure
2017-1000416 axTLS coding error in the ASN.1 parser
2016-9132 Botan Memory safety (write) decoding BER data an integer overflow; memory corruption
2015-5726 Botan Memory safety (read) remote attackers to cause a denial of service (application crash)
2016-1000342 Bouncy Castle Parsing only well-formed input introduction of ’invisible’ data into a signed structure
2016-1000338 Bouncy Castle Parsing only well-formed input introduction of ’invisible’ data into a signed structure
2017-11496 Gemalto ACC Memory safety (write) remote attackers to execute arbitrary code
2016-9939 libcrypto++ Bounds on heap size If there is not enough content octets in the ASN.1 object, then

the function will fail and the memory block will be zeroed even
if its unused. There is a noticeable delay during the wipe for a
large allocation

2015-2806 libtasn1 Memory safety (write) remote attackers to have unspecified impact via unknown vectors
2016-6129 LibTomCrypt Memory safety (read) does not validate that the message length is equal to the ASN.1

encoded data length
2019-9162 Linux Kernel Memory safety (read/write) out-of-bounds read and write operations possible
2016-2053 Linux Kernel Parsing only well-formed input Skipping non-optional fields after optional
2016-0758 Linux Kernel Memory safety (read) local users to gain privileges via crafted ASN.1 data
2019-13470 MatrixSSL Memory safety (read) out-of-bounds read
2016-6891 MatrixSSL Memory safety (read) (out-of-bounds read) via a crafted ASN.1 Bit Field primitive
2016-1950 Mozilla NSS Memory safety (write) remote attackers to execute arbitrary code via crafted ASN.1

data in an X.509 certificate
2015-7182 Mozilla NSS Memory safety (write) denial of service (application crash) or possibly execute arbitrary

code
2015-7181 Mozilla NSS Memory safety (write) improperly restricts access to an unspecified data structure,

which allows remote attackers to cause a denial of service
(application crash) or possibly execute arbitrary code

2016-5080 Objective Systems ASN1C Memory safety (write) execute arbitrary code or cause a denial of service
2018-0739 OpenSSL Bounds on stack size exceed the stack given malicious input with excessive recursion
2016-7053 OpenSSL Memory safety (read) crash with a NULL pointer dereference
2016-2842 OpenSSL Memory safety (write) remote attackers to cause a denial of service (out-of-bounds write

or memory consumption)
2016-2176 OpenSSL Memory safety (read) remote attackers to obtain sensitive information from process

stack memory or cause a denial of service (buffer over-read)
2016-2109 OpenSSL Bounds on heap size denial of service (memory consumption)
2016-2108 OpenSSL Memory safety (write) (buffer underflow and memory corruption)
2016-0799 OpenSSL Memory safety (read/write) remote attackers to cause a denial of service (overflow and out-

of-bounds read)
2015-3195 OpenSSL Memory safety (read) obtain sensitive information from process memory by triggering

a decoding failure in a PKCS#7
2015-3194 OpenSSL Memory safety (read) denial of service (NULL pointer dereference and application

crash) via an RSA PSS ASN.1 signature
2015-1790 OpenSSL Memory safety (read) remote attackers to cause a denial of service (NULL pointer

dereference and application crash)
2015-0289 OpenSSL Memory safety (read) attackers to cause a denial of service (NULL pointer dereference

and application crash)
2015-0287 OpenSSL Memory safety (write) denial of service (invalid write operation and memory corrup-

tion)
2015-0286 OpenSSL Memory safety (read) denial of service (invalid read operation and application crash)
2015-0208 OpenSSL denial of service (NULL pointer dereference and application

crash)
2015-1182 PolarSSL Memory safety (write) remote attackers to cause a denial of service (crash) or possibly

execute arbitrary code
2018-11058 RSA BSAFE Memory safety (read) Buffer Over-Read vulnerability when parsing ASN.1 data
2018-11056 RSA BSAFE Bounds on stack size remote attacker could use maliciously constructed ASN.1 data

that would exhaust the stack
2018-11054 RSA BSAFE Native integer overflows integer overflow vulnerability
2015-7540 Samba Bounds on heap size remote attackers to cause a denial of service (memory consump-

tion and daemon crash)
2019-6740 Samsung S9 Memory safety (write) does not properly validate the length of user-supplied data prior

to copying it to a fixed-length heap-based buffer
2017-18315 Snapdragon SOC Memory safety (read) Buffer over-read vulnerabilities
2017-9023 strongSwan Termination infinite loop in CHOICE parsing
2019-9209 Wireshark Memory safety (write) buffer overflow associated with excessive digits in time values
2019-5718 Wireshark Memory safety (read) boundary check to make sure we don’t go past the end of ”ptr”
2019-13619 Wireshark Memory safety (read) properly restricting buffer increments
2018-14343 Wireshark integer overflow in BER lengths
2016-4421 Wireshark Bounds on stack size remote attackers to cause a denial of service (deep recursion,

stack consumption, and application crash) via a packet that
specifies deeply nested data

2016-4418 Wireshark Memory safety (read) remote attackers to cause a denial of service (buffer over-read
and application crash)

2016-2522 Wireshark Memory safety (read) remote attackers to cause a denial of service (out-of-bounds read
and application crash)

9

REFERENCES

[1] ISO/IEC 8824-1, “Abstract Syntax Notation One (ASN.1): Specification
of basic notation,” 2015, accessed 30-January-2020. [Online]. Available:
http://handle.itu.int/11.1002/1000/12479

[2] R. A. Martin, “Managing vulnerabilities in networked systems,” Com-
puter, vol. 34, no. 11, pp. 32–38, Nov 2001.

[3] R. Chirgwin, “Guilt by ASN: Compiler’s bad memory bug could
sting mobes, cell towers telco, embedded systems may inherit remote
vulns,” 2016. [Online]. Available: https://www.theregister.co.uk/2016/
07/19/asn objective systems asn compiler memory bug/

[4] G. Klein, J. Andronick, K. Elphinstone, T. Murray, T. Sewell, R. Kolan-
ski, and G. Heiser, “Comprehensive formal verification of an OS
microkernel,” ACM Transactions on Computer Systems, vol. 32, no. 1,
pp. 2:1–2:70, Feb. 2014.

[5] X. Leroy, “Formal verification of a realistic compiler,” Commun.
ACM, vol. 52, no. 7, pp. 107–115, Jul. 2009. [Online]. Available:
https://doi.org/10.1145/1538788.1538814

[6] J.-K. Zinzindohoué, K. Bhargavan, J. Protzenko, and B. Beurdouche,
“HACL*: A Verified Modern Cryptographic Library,” in
ACM Conference on Computer and Communications Security
(CCS), Dallas, United States, Oct. 2017. [Online]. Available:
https://hal.inria.fr/hal-01588421

[7] B. Delaware, S. Suriyakarn, C. Pit-Claudel, Q. Ye, and A. Chlipala,
“Narcissus: Correct-by-construction derivation of decoders and encoders
from binary formats,” Proc. ACM Program. Lang., vol. 3, no. ICFP,
Jul. 2019. [Online]. Available: https://doi.org/10.1145/3341686

[8] S. Pirelli, A. Zaostrovnykh, and G. Candea, “A formally verified nat
stack,” in Proceedings of the 2018 Afternoon Workshop on Kernel
Bypassing Networks, 2018, pp. 8–14.

[9] M. Musuvathi, D. R. Engler et al., “Model checking large network
protocol implementations.” in NSDI, vol. 4, 2004, pp. 12–12.

[10] J.-C. Filliâtre and P. Letouzey, “Extraction of programs in
ocaml and haskell,” [Accessed 30-January-2020]. [Online]. Available:
https://coq.inria.fr/refman/addendum/extraction.html

[11] T. Imada, “Mirageos unikernel with network acceleration for iot cloud
environments,” in Proceedings of the 2018 2nd International Conference
on Cloud and Big Data Computing, 2018, pp. 1–5.

[12] M. Dénès, C. Hritcu, L. Lampropoulos, Z. Paraskevopoulou, and B. C.
Pierce, “Quickchick: Property-based testing for coq,” in The Coq Work-
shop, 2014.

[13] A. W. Appel, Program logics for certified compilers. Cambridge
University Press, 2014.

[14] S. Blazy and X. Leroy, “Mechanized semantics for the clight subset of
the c language,” Journal of Automated Reasoning, vol. 43, no. 3, pp.
263–288, 2009.

[15] T. Coq Development Team, The Coq Proof Assistant Reference Manual,
version 8.10.1, Oct. 2017. [Online]. Available: http://coq.inria.fr

[16] Y. Bertot and P. Castéran, Interactive theorem proving and program
development: Coq’Art: the calculus of inductive constructions. Springer
Science & Business Media, 2013.

[17] I. Zaichuk, “Formal verification of floating-point number conversion
between ASN.1 BER and IEEE 754 binary encodings,” 2019.
[Online]. Available: https://github.com/digamma-ai/asn1fpcoq/blob/
master/doc/paper/paper.pdf

[18] ISO/IEC 9594-8, “X.590 (10/2019): Public-key and attribute certificate
frameworks,” http://handle.itu.int/11.1002/1000/14033, 2019, [Online;
accessed 30-January-2020].

[19] ISO/IEC 8825-1, “ASN.1 encoding rules: Specification of basic
encoding rules (BER), canonical encoding rules (CER) and distinguished
encoding rules (DER),” 2015, [accessed 30-January-2020]. [Online].
Available: http://handle.itu.int/11.1002/1000/12483

[20] B. S. Kaliski Jr and C. Redwood City, “A layman’s guide to a subset
of ASN.1, BER, and der,” 1993.

[21] G. Hutton and E. Meijer, “Monadic Parser Combinators,” Department
of Computer Science, University of Nottingham, Technical Report
NOTTCS-TR-96-4, 1996.

[22] T. Ramananandro, A. Delignat-Lavaud, C. Fournet, N. Swamy,
T. Chajed, N. Kobeissi, and J. Protzenko, “Everparse: Verified secure
zero-copy parsers for authenticated message formats,” in 28th USENIX
Security Symposium, USENIX Security 2019, Santa Clara, CA, USA,
August 14-16, 2019, N. Heninger and P. Traynor, Eds. USENIX
Association, 2019, pp. 1465–1482. [Online]. Available: https://www.
usenix.org/conference/usenixsecurity19/presentation/delignat-lavaud

[23] P. Steckler, “A formal semantics for ASN.1,” in 2019 High Confidence
Software and Systems Conference, Annapolis, Maryland, 2019. [Online].
Available: https://cps-vo.org/node/2313

[24] M. Tullsen, “Challenges and possibilities for safe and secure
ASN.1 encoders and decoders,” in Fifth Workshop on Language-
Theoretic Security (LangSec) Conference, 2018. [Online]. Available:
http://spw18.langsec.org/slides/Tullsen-Safe-ASN1.pdf

[25] M. Tullsen, L. Pike, N. Collins, and A. Tomb, “Formal verification
of a vehicle-to-vehicle (V2V) messaging system,” in International
Conference on Computer Aided Verification. Springer, 2018, pp. 413–
429.

10

