
Firewall Policy Modeling, Analysis and

Simulation: a Survey

Vadim Zaliva, lord@crocodile.org

May 9, 2008

Abstract

Computer firewalls are widely used for security policy enforcement
and access control. Current firewalls use various processing models and
are configured using their own policy description languages.

In this paper we will try to survey research efforts in the area of formal-
ization of firwall operational sematnics and policy description languages
and applications of such formal models and languages for firewall simula-
tion, policy optimization, detection of configuration errors and enterprise
security policy comliance testing.

1 The Scope

The range of network security is very broad. It roots in low-level security en-
forcement mechanism on the level of IP packets (packet filtering). If we go
beyond individual packets analysis, we are now dealing with technique called
“stateful inspection”.

The next level of network security is high-level enterprise security policies
like RBAC [17], and their application to network firewalls[25].

Finally, taking into account network topology, with multiple perimeters of
policy enforcement and possbily internal sectioning into security zones, we are
now dealing with notion of distributed firwalls and distributed Intrusion Detec-
tion Systems (IDS).

There is ongoing research in the areas mentioned above. However in this
paper, we will deal mostly with the most fundamental level - packet filtering
(for broader survey of higher level securitiy-related formal languages and models
see [12]).

A packet filtering engine lies at the core of most network security mecha-
nisms. Having a formal model of this fundamental building block is essential in
developement of more complex, higher-level security models.

1



2 Packet Filtering Defined

2.1 Processing Model

Packet filtering is a core functionality of network firewalls. The main idea is
that the firewall resides on a network Node (Host or Router) and inspects all
network traffic. Inspection is performed in accordance to network security pol-
icy (which we will discuss in detail later). Based on this policy, the firewall
makes a decision regarding what action to perform on a given packet. The most
commonly performed actions are:

Accept the packet is permitted to pass through

Deny/Drop the packet is silently dropped

Some firewalls allow additional actions, which does not necessarily affect
the packet’s traversal of the firewall, but are invoked for side effects. Common
examples are:

Accounting the packet counter associated with this rule is incremented

Reject the packet is rejected, notyfing the server via ICMP message

The low-level implemenation of packet matching and the algorithms for doing
this efficiently are commonly refered to as packet classification problem. It is
mostly dealing with performance and resource usage constraints. There is a
significant body of research on this subject (For example see: [16], [20],[19])
and although it is closely related to the subject of this article, we will try
not to dwell too much on actual matching algorihtms, but rather concentrate
on formalization of firewall behavior and the subsequent application of such
formalization.

2.2 Policy

The firewll’s behavior is controlled by the “Policy”. Policy consists of “Rules”
(in context of packet routing they also often reffered as “filters”). Each rule
constist of condition and action.

Condition describes the criteria used to match individual packets. Action
describes the activity to be performed if matches have been made.

Basic conditions consitst of tests, matching individual fields of the packet
such as source address, destination address, packet type, etc. In the case of state-
ful inspection (e.g. via ip conntrack module in iptables), connection-related vari-
ables like connection state (“established”, “related”, “new”) could be checked.
Finally, various system state variables like current time of day, CPU load, or
system-wide configuration parameters could be taken into account.

The condition could be viewed as a predicate. Usually, for a packet to match
a condition, all tests must be satisfied (logical conjunction).

2



The sequence of rules processing differs significantly between varous firewall
implementations. There are two common matching strategies:

“single trigger” processing means that an action of the first matching rule
will be performed.

“multi-trigger” processing means that all rules will be matched and an action
from the last matching rule will be peformed.

Some firewalls like ipfilter support “multi-trigger” policy by default, but
allow individual rules to specify quick option which signifies that no further
processing should be done on matched packet.

Some firewall like iptables have even more complex processing logic, which
allows for branching by organizing rules in into chains and providing special
actions to redirect control from from one chain to another.

Hari [23] mentions another interesting strategy, where each of the filter fields
are assigned priorities and the filter with the most specific matching field with
the highest priority is selected. This allows, for example, in packet matching to
give a highest priority to match based on the source IP rather than on destina-
tion IP.

3 Formal Models

One direction of research is the definition of special high-level languages (some-
times graphical) to describe firewall policy. In such languages, the policy rep-
resentation is translated to the native policy description language of an actual
firewall platform. Examples are: Firewall Builder [35], HLFL [1], FLIP[36],
Firmato[7],INSPECT[2],XACML[18]. Some of these languages allow you to de-
scribe the policy of a single firewall, while others allow you to define an organi-
zation security policy which is translated to policy files for multiple firewalls.

The research in this area is fragmented. A single, generaly accepted mathe-
matical model describing firewall policies is yet to emerge. Belowe we hightlight
some of the work in this area:

Ehab S. Al-Shaer and Hazem H. Hamed [4],[5] use fixed rule structure, they
call “5-tuple filter”: order,protocol,src ip,src port,dst ip,dst port,action

In order to formally model firewall policy, these researchers start by defining
the relationship between rules in the policy. Then they define the following
relations between two rules: “completely disjoined”, “exactly matched”, “inclu-
sively matched”, “partially disjoing”, “correlated”.

Next Al-Shaer and Hamed prove that these relaionships are distinct and
that their union represents the universal set of relaions between any two k-tuple
filters in a firewall policy.

The policy is represented as a single-rooted tree, where each node represents
a field of a filtering rule and each branch at this node represents a possible value
of the associated tree. An example of such a tree taken from [4] is shown at
Figure 1

Hari et al. [23] consider a much simpler packet filtering model, where each
filter is k-tuple (F [1], F [2], . . . , F [k]) and where each field F [i] is a prefix bit

3



Figure 1: Example of policy representation as a tree

string. This model could be used not only in firewalls, but also for routing.
Note that all matching is done only by matching prefix bit strings. However, as
shown in [30] it is always possible to represent a subrange of [0, 2k] as at most
2k prefixes.

The chosen models have an interesting property, on which they base their
algorithms:

If filter fields are prefix fields, then each field of a filter is either
a strict subset of, or equal to, or a strict superset of, or completely
disjoint from the corresponding field in any other filter. In other
words, it is not possible to have partial overlaps of fields. Partial
overlaps can only occur when the fields are arbitrary ranges, not
prefixes.[23]

Using that property, they propose to solve a filter conflict problem by re-
ordering as cycle elimiation problem in directed graph.

There are some efforts related to analysis of firewall plolicies, using machine
reasoning techniques. In particular, in [15] describes Expert System built us-
ing Constraint Logic Programming (CLP). Considering each rule as 6-tuple or
ranges along with action taken (“permit” or “deny”), the system represents them
as constraints on the 6-dimensional packet space. Each rule is a 6-dimensional
hypercube.

Capretta et al. in [9] using Coq[8] proof assistant to detect conflicts in firewall
policies. Their “conflict” definition is two rules for which exists a request for
which they give an opposit action (only accept and deny actions are considered).
Then they proceed to proove formally soundness and completeness to establish
the correctness of their algorithm.

4



Another approach to policy modeling is using geometric interpretation. For
example, Eppstein[14] suggests that each rule could be represented as a collec-
tion of d-dimensional ranges [l1i , r

1
i ] × . . . × [ldi , rd

i ], an action Ai and priority
pi. Similarly, each packet can be viewed as a d-dimensional vector of values
[P1, . . . , Pd]. A filter i applies to packet if Pj ∈ [lji , r

j
i ]. Epspstein proceeds to

formally define packet classification problem and filter conflict detection problem
using this geometrical abstraction and suggests algorithms for solving them.

The multidimensional range searching problem from computational geome-
try is related to the filter conflict detection problem. Multiple algorithms exist
to solve this problem, surveyed in [26]. In particular, as mentioned in [23], Edels-
brunner [11] has proposed an algorithm which in the worst case can solve this
problem in O((log(N))2k−1 +R) where N is number or k -dimensional rectangle
boxes and R is number of boxes intersecting the query box.

Unfortunately, the filter conflict problem is somewhat different
from the multi-dimensional rectangle intersection problem. While a
filter contained inside another filter (a filter that is more specific than
the other in all fields) is not a conflict, the corresponding rectangles
are considered intersecting in the geometric framework. Thus, the
number of rectangle intersections R can be much bigger than the
number of filter conflicts C. Secondly, even for modest values of
N and k , the worst-case time and space bound guaranteed by this
data structure are hopelessly bad. For instance, when N = 10, 000
and k = 4, the algorithm guarantees a worst-case search cost of
137 = 62748517 , meaning that it is no better than a linear search
through the filters.[23]

Guttman[21] et al. describe group of network security related problems and
modeing frameworks that lead to their solutions:

We focus the modeling work on representing behavior as a function
of configurations, and predicting the consequences of interactions
among differently configured devices.[21]

While Guttman et al. cover both packet filtering firewalls and IPSec gate-
ways, Uribe et al.[31] build upon their work, extending it by including specifi-
cations and requirements for Network Itrusion Detection Systems (NIDSs).

Yuan et al. in FIREMAN[34] are one of few researches who go beyond a
simple linear policy model and consider what they call Complex Chain Model,
covering more complex policy organization similar to one implemented in pop-
ular Linux firewall Netfilter. They also introduce the notion of ACL Graph,
formed by a combination of multiple ACLs accross the trajectory of the packet.
Using this graph they provide some analysis of anomalies in distributed firewall
configuration.

5



4 Applications

4.1 Shadowing, Redundancy and Anomaly Detection

Some studies[19] show that 15% of rules in real-life policies might be redundant.
More formal definition of shadowing and redudancy, from [10] are:

Definition 1.1 Let R be a set of filtering rules. Then R has
shadowing iff there exists at least one filtering rule, Ri in R, which
never applies because all the packets that Ri may match, are previ-
ously matched by another rule, or combination of rules, with higher
priority in order.

Definition 1.2 Let R be a set of filtering rules. Then R has
redundancy iff there exists at least one filtering rule, Ri in R, such
that the following conditions hold: (1) Ri is not shadowed by any
other rule; (2) when removing Ri from R, the filtering result does
not change.

In [10] the authors present (with formal proofs of correctness) algorithms for
shadowed and redundant rules detection and removal. However, their algorithms
are using simplified firewall model with only “single trigger” processing strategy
and just two possible actions: accept and deny. The authors do not go into exact
semantics of rule conditions matching, treating them as an conjunctive set of
opaque condition attributes.

In [4] the authors identify four firewall policy anomalies: “shadowing anomaly”,
“correlational anomaly”, “generalization anomaly” and “redundancy anomaly”
along with the algorithm to detect any of these anomalies.

In [5] they extend their anomaly-detection algorithms to configuration, con-
sisting of multiple firewalls. They provide format definition of various Inter-
Firewall Anomalies and propose algorithms for their detection.

Baboescu [6] suggest an optimized conflict detection algorithm, which while
based on a known Bit Vector approach, is showing order of magnitude improve-
ment compared to previous work.

Qian et al. in [29] introduce ACLA framework which includes algorithms,
allowing it to:

detect and remove redundant rules, discover and repair inconsistent
rules, merge overlapping or adjacent rules, map an ACL with com-
plex interleaving permit/deny rules to a more readable form consist-
ing of all permits or denies, and finally compute a meta-ACL profile
based on all ACLs along a network path.[29]

They present set of formal rule relation definitions: “intersect”, “contain”,
“overlap”, “disjoin”, “adjacent”, “inconsistent” and “redundant”.

Gouda and Liu in [27] analyze rule redundancy problem. They introduce the
notion of upward redundant rules and downward redundant rules (with formal
definition). They offer algorithms for identification of redundant rules using
firewall decision tree.

6



4.2 Firewall Simulation

Being able to simulate firewall behavior is important for security audit, testing
and policy debugging. In order to simulate a physical firewall one needs to
implement a model of security policies provided by this firewall and put it in
the context of the (simulated) network environment (network topology,routing
tables, addresses, etc.). Firewall simulation requires building well-defined formal
model of the firewall and seeding it with actual policy files. Some work in this
direction was done in context of Fang [28] and Lumeta Firewall Analyzer [33]
projects.

Expert System described in [15] allows one to analyze policy by asking
queries like “From which sources are packets to this destination are permit-
ted?” or “What rules permit packets from this network?”. The knowledge base
could be easily extended with new rules.

ACLA [29] also have simulation capabilities which allow us to answer queries
like “What are all the permitted traffic from src=X to dest=Y?” or “Will traffic
flow with src=X, dest=Y, protocol=TCP, port=80 be permitted?”.

FIREMAN[34] is a static analysis toolkit for firewall modeling and analy-
sis using static analysis and symbolic model checking techniques. The policy
modelling is implemented using Binary Decision Diagrams (BDDs).

4.3 Policy Optimization

Policy optimizaton is important area of research. While individual rules are
quite simple, they have to match huge amounts of packets in real time and
performance becomes key. Some researchers suggest that the distrbution of
traffic volume produced by different rules is very uneven (20% of the flows last
5 seconds or more and carry about 60% of total traffic)[22]. So optimizing rule
matching order based on rule sequencing promises very substantial perfomrance
benefits. In [22] Hamid et. al. the authors prove that optimal firewall rule
ordering is an NP-complete problem.

There are multiple algorithms and techniques suggested in the literature
(e.g. Content Addressable Memory, Tuple Space Search, Fat Inverted Segment
Trees, Recursive Flow Classification, etc), see [19] for a survey.

4.4 Testing

Vigna [32] describes the formal foundation of firewall “white-box” testing based
on formal models. Jurgens has also done some related work [24] using CASE
tools. The main challenge of this kind of testing is that in addition to firewall
policy, one needs to have a model of related network topology to generate and
run meaningful tests.

In [13] the authors present an automated testing toolkit to test firewall
implementations which automatically generates both policy and test data.

7



5 Future Research Directions

While the generic packet classficiation problem is well studied, most models
consider a simple ordered set of rules, usually with “single trigger” semantics.
For practical applications, models must be able to deal with more complex pro-
cessing models implemented in real firewall producs. This includes the “multi-
trigger” processing model, as well as more complex, branching models like the
“chains”-based one used in NetFilter. Perhaps some of these models could be
transformed to a more simple “ordered set of rules” model, but such transfor-
mations have yet to be formally defined.

Most policy optimization and anomaly detection algorithms described in
the literature only consider “accept” and “reject” actions. However some rules
might have actions producing side effects and such rules (along with their trig-
gering order) must be preserved during policy transformation/optimiziation pro-
cess.

Most models make some assumtions about packet attributes. Some assume
that they are bit strings which could be matched via prefixes, some assume
them to be continuous numeric ranges, and some assume them to be just a
predicates. However, real firewalls provide support for the attributes which can
not be easily converted to any of these simple representations. For example,
some firwalls allow you check for certain days of week or hours of a day in rules.

References

[1] High level firewall language. http://www.hlfl.org/.

[2] Inspect language reference. http://www.security-gurus.de/docs.php.

[3] Netspoc: a network security policy compiler. http://netspoc.berlios.de/.

[4] Al-Shaer, E., and Hamed, H. Firewall Policy Advisor for anomaly
discovery and rule editing. Integrated Network Management, 2003.
IFIP/IEEE Eighth International Symposium on (2003), 17–30.

[5] Al-Shaer, E., and Hamed, H. Discovery of policy anomalies in dis-
tributed firewalls. IEEE INFOCOM 4 (2004), 2605–2616.

[6] Baboescu, F., and Varghese, G. Fast and scalable conflict detection
for packet classifiers. Computer Networks 42, 6 (2003), 717–735.

[7] Bartal, Y., Mayer, A., Nissim, K., and Wool, A. Firmato: A novel
firewall management toolkit. ACM Transactions on Computer Systems
(TOCS) 22, 4 (2004), 381–420.

[8] Bertot, Y., and Castéran, P. Interactive Theorem Proving and Pro-
gram Development: Coq’Art: the Calculus of Inductive Constructions.
Springer, 2004.

8



[9] Capretta, V., Stepien, B., Felty, A., and Matwin, S. Formal
correctness of conflict detection for firewalls. Proceedings of the 2007 ACM
workshop on Formal methods in security engineering (2007), 22–30.

[10] Cuppens, F., Cuppens-Boulahia, N., and Garcıa-Alfaro, J. De-
tection and Removal of Firewall Misconfiguration. Proceedings of the 2005
IASTED International Conference on Communication, Network and Infor-
mation Security 1 (2005), 154–162.

[11] Edelsbrunner, H. A new approach to rectangle intersections part I.
International Journal of Computer Mathematics 13, 3 (1983), 209–219.

[12] El-Atawy, A. Survey on the Use of Formal Languages/Models for the
Specification, Verification, and Enforcement of Network Access-lists. School
of Computer Science, Telecommunication, and Information Systems, De-
Paul University, Chicago, Illinois 60604 .

[13] El-Atawy, A., Samak, T., Wali, Z., Al-Shaer, E., Lin, F., Pham,
C., and Li, S. An Automated Framework for Validating Firewall Policy
Enforcement. Policies for Distributed Systems and Networks, 2007. POL-
ICY’07. Eighth IEEE International Workshop on (2007), 151–160.

[14] Eppstein, D., and Muthukrishnan, S. Internet packet filter manage-
ment and rectangle geometry. Proceedings of the twelfth annual ACM-SIAM
symposium on Discrete algorithms (2001), 827–835.

[15] Eronen, P., and Zitting, J. An expert system for analyzing firewall
rules. Proceedings of the 6th Nordic Workshop on Secure IT Systems (2001),
100–107.

[16] Feldman, A., and Muthukrishnan, S. Tradeoffs for packet classifica-
tion. INFOCOM 2000. Nineteenth Annual Joint Conference of the IEEE
Computer and Communications Societies. Proceedings. IEEE 3 (2000).

[17] Ferraiolo, D., Cugini, J., and Kuhn, D. Role-Based Access Control
(RBAC): Features and Motivations. Proceedings of 11th Annual Computer
Security Application Conference (1995), 11–15.

[18] Godik, S., and Moses, T. eXtensible access control markup language
(XACML), version 1.0, oasis-xamcl-1.0. pdf, 2003.

[19] Gupta, P. Algorithms for Routing Lookups and Packet Classification. PhD
thesis, Stanford University, 2000.

[20] Gupta, P., and McKeown, N. Algorithms for packet classification.
Network, IEEE 15, 2 (2001), 24–32.

[21] Guttman, J., and Herzog, A. Rigorous automated network security
management. International Journal of Information Security 4, 1 (2005),
29–48.

9



[22] Hamed, H., and Al-Shaer, E. Dynamic rule-ordering optimization for
high-speed firewall filtering. Proceedings of the 2006 ACM Symposium on
Information, computer and communications security (2006), 332–342.

[23] Hari, A., Suri, S., and Parulkar, G. Detecting and resolving packet
filter conflicts. INFOCOM 2000. Nineteenth Annual Joint Conference of
the IEEE Computer and Communications Societies. Proceedings. IEEE 3
(2000).

[24] Jurjens, J., and Wimmel, G. Specification-based testing of firewalls.
Andrei Ershov 4th International Conference Perspectives of System Infor-
matics(PSI01), 308–316.

[25] Laborde, R., Nasser, B., Grasset, F., Barrère, F., and Benzekri,
A. Network Security Management: A Formal Evaluation Tool based on
RBAC Policies. IFIP NetCon2004 , 0–387.

[26] Lin, M., and Gottschalk, S. Collision detection between geometric
models: A survey. Proc. of IMA Conference on Mathematics of Surfaces 1
(1998), 602–608.

[27] Liu, A., and Gouda, M. Complete redundancy detection in firewalls.
Proc. 19th Annual IFIP Conference on Data and Applications Security
(2005).

[28] Mayer, A., Wool, A., and Ziskind, E. Fang: A firewall analysis engine.

[29] Qian, J., Hinrichs, S., and Nahrstedt, K. ACLA: A Framework for
Access Control List (ACL) Analysis and Optimization. Communications
and Multimedia Security Issues of the New Century (2001).

[30] Srinivasan, V., Varghese, G., Suri, S., and Waldvogel, M. Fast
and scalable layer four switching. ACM SIGCOMM Computer Communi-
cation Review 28, 4 (1998), 191–202.

[31] Uribe, T., and Cheung, S. Automatic analysis of firewall and network
intrusion detection system configurations. Journal of Computer Security
15, 6 (2007), 691–715.

[32] Vigna, G. A formal model for firewall testing. Dipartamento di Elettronica
Politecnico di Milano.

[33] Wool, A. Architecting the Lumeta firewall analyzer. Proceedings of the
10th conference on USENIX Security Symposium-Volume 10 table of con-
tents (2001), 7–7.

[34] Yuan, L., Mai, J., Su, Z., Chen, H., Chuah, C., and Mohapatra,
P. FIREMAN: A Toolkit for FIREwall Modeling and ANalysis. IEEE
Symposium on Security and Privacy (2006), 199–213.

10



[35] Zaliva, V. Platform-independent firewall policy representation, 2007.

[36] Zhang, B., Al-Shaer, E., Jagadeesan, R., Riely, J., and Pitcher,
C. Specifications of a high-level conflict-free firewall policy language for
multi-domain networks. Proceedings of the 12th ACM symposium on Access
control models and technologies (2007), 185–194.

11


	The Scope
	Packet Filtering Defined
	Processing Model
	Policy

	Formal Models
	Applications
	Shadowing, Redundancy and Anomaly Detection
	Firewall Simulation
	Policy Optimization
	Testing

	Future Research Directions

