HAMAKE: A Dataflow Approach to Data
Processing in Hadoop

Vadim Zaliva
Codeminders
Email: lord@crocodile.org

Abstract—Most non-trivial data processing scenarios using
Hadoop typically involve launching more than one MapReduce
job. Usually, such processing is data-driven with the data funneled
through a sequence of jobs. The processing model could be
expressed in terms of dataflow programming, represented as a
directed graph with datasets as vertices. Using fuzzy timestamps
as a way to detect which dataset needs to be updated, we can
calculate a sequence in which Hadoop jobs should be launched
to bring all datasets up to date. Incremental data processing and
parallel job execution fit well into this approach.

These ideas inspired the creation of the hamake utility. We
attempted to emphasize data allowing the developer to formulate
the problem as a data flow, in contrast to the workflow approach
commonly used. Hamake language uses just two data flow
operators: fold and foreach, providing a clear processing model
similar to MapReduce, but on a dataset level.

I. MOTIVATION AND BACKGROUND

Hadoop[ll] is a popular open-source implementation
of MapReduce, a data processing model introduced by
Google[2].

Hadoop is typically used to process large amounts of
data through a series of relatively simple operations. Usually
Hadoop jobs are I/O-bound [3], [4], and execution of even
trivial operations on a large dataset could take significant sys-
tem resources. This makes incremental processing especially
important. Our initial inspiration was the Unix make utility.
While applying some of the ideas implemented by make to
Hadoop, we took the opportunity to generalize the processing
model in terms of dataflow programming.

Hamake was developed in late 2008 to address the problem
of incremental processing of large data sets in a collaborative
filtering project.

We’ve striven to create an easy to use utility that developers
can start using right away without complex installation or
extensive learning curve.

Hamake is open source and is distributed under Apache
License v2.0. The project is hosted at Google Code at the
following URL: http://code.google.com/p/hamake/.

II. PROCESSING MODEL

Hamake operates on files residing on a local or distributed
file system accessible from the Hadoop job. Each file has a
timestamp reflecting the date and time of its last modification.
A file system directory or folder is also a file with its own
timestamp. A Data Transformation Rule (DTR) defines an

Vladimir Orlov
Codeminders
Email: vorl@codeminders.com

operation which takes files as input and produces other files
as output.

If file A is listed as input of a DTR, and file B is listed
as output of the same DTR, it is said that “B depends on
A.” Hamake uses file time stamps for dependency up-to-
date checks. DTR output is said to be up fo date if the
minimum time stamp on all outputs is greater than or equal
to the maximum timestamp on all inputs. For the sake of
convenience, a user could arrange groups of files and folders
into a fileset which could later be referenced as the DTR’s
input or output.

Hamake uses fuzzy timestampsﬂ which can be compared,
allowing for a slight margin of error. The “fuzziness” is
controlled by a tolerance of o. Timestamp a is considered
to be older than timestamp b if (b — a) > o. Setting 0 = 0
gives us a non-fuzzy, strict timestamp comparison.

Hamake attempts to ensure that all outputs from a DTR are
up to dateE] To do so, it builds a dependency graph with DTRs
as edges and individual files or filesets as vertices. Below, we
show that this graph is guaranteed to be a Directed Acyclic
Graph (DAG).

After building a dependency graph, a graph reduction algo-
rithm (shown in Figure [T) is executed. Step 1 uses Kahn’s
algorithm[3] of topological ordering. In step 6, when the
completed DTR is removed from the dependency graph, all
edges pointing to it from other DTRs are also removed.

The algorithm allows for parallelism. If more than one
DTR without input dependencies is found during step 1, the
subsequent steps 2-6 can be executed in parallel for each
discovered DTR.

It should be noted that if DTR exectuion has failed, hamake
can and will continue to process other DTRs which do not
depend directly or indirectly on the results of this DTR. This
permits the user to fix problems later and re-run hamake,
without the need to re-process all data.

Cyclic dependencies must be avoided, because a dataflow
containing such dependencies is not guaranteed to terminate.
Implicit checks are performed during the reading of DAG
definitions and the building of the dependency graph. If a cycle
is detected, it is reported as an error. Thus the dependency

IThe current stable version of hamake uses exact (non-fuzzy) timestamps.
2Because hamake has no way to update them, it does not attempt to ensure
that files are up to date, unless they are listed as one of a DTR’s outputs.

http://code.google.com/p/hamake/

1: Locate DTR
wio input
dependencies

3: Inputs up 10
date?

6: Remove DTR
from graph

hamake dependency graph reduction algorithm

Fig. 1.

graph used by hamake is assured to be a directed acyclic
graph.

However, hamake supports a limited scenario of iterative
processing with a feature called generations. Each input or
output file can be marked with a generation attribute. Any
two files referencing the same path in the file system while
having different generations are represented as two distinct
vertices in the dependency graph. This permits resolution of
cyclic dependencies within the context of a single hamake
execution.

One useful consequence of hamake dataflow being a DAG
is that for each vertex we can calculate the list of vertices
it depends on directly and indirectly using simple transitive
closure. This allows us to easily estimate the part of a dataflow
graph being affected by updating one or more files, which
could be especially useful for datasets where the cost of re-
calculation is potentially high due to data size or computational
complexity.

Hamake is driven by dataflow description, expressed in a
simple XML-based language. The full syntax is described in
[6]. The two main elements, fold and foreach, correspond to
two types of DTRs. Each element has input, output, and pro-
cessing instructions. The execution of processing instructions
brings the DTR output up to date.

Fold implies a many-to-one dependency between input and
output. In other words, the output depends on the entirety
of the input, and if any of the inputs have been changed,
the outputs need to be updated. Foreach implies a one-to-one
dependency where for each file in an input set there is a cor-
responding file in an output set, each updated independently.

Hamake dataflow language has declarative semantics mak-
ing it easy to implement various dataflow analysis and opti-

mization algorithms in the future. Examples of such algorithms
include: merging dataflows, further execution parallelization,
and analysis and estimation of dataflow complexity.

III. PARALLEL EXECUTION

While determining the sequence and launching of Hadoop
jobs required to bring all datasets up-to-date, hamake attempts
to perform all required computations in the shortest possible
time. To achieve this, hamake aims for maximal cluster
utilization, running as many Hadoop jobs in parallel as cluster
capacity permits.

There are three main factors that drive job scheduling logic:
file timestamps, dependencies, and cluster computational ca-
pacity. On the highest level, DTR dependencies determine the
sequence of jobs to be launched.

In the case of fold DTR, a single Hadoop job, PIG script
or shell command, may be launched, and hence there is no
opportunity for parallel execution. In the example shown in
Figure [2] since fileset B depends on all files in fileset A, a
single job associated with fold DTR will be executed.

A fold B
a4
1 "
a2 »w
N by
S
]
S

Fig. 2. Decomposition of fold DTR

A foreach DTR works by mapping individual files in fileset
A to files in fileset B. Assuming that fileset A consists of 3
files: a1, as, as, the dependency graph could be represented
as shown in Figure [3] In this case, we have an opportunity to
execute the three jobs in parallel.

A foreach B

a > y » by

ag > y » bs
S —
Fig. 3. Decomposition of foreach DTR

The Hadoop cluster capacity is defined in terms of the
number of map slots and reduce slots. When a DTR launches
a Hadoop job, either directly as defined by mapreduce pro-
cessing instruction or via PIG script, a single job will spawn
one or more mapper or reducer tasks, each taking one re-
spective slot. The number of mappers and reducers launched
depends on many factors, such as the size of the HDFS block,
Hadoop cluster settings, and individual job settings. In general,
hamake has neither visibility of nor control over most of these
factors, so it does not currently deal with individual tasks. Thus
hamake parallel execution logic is controlled by a command
line option specifying how many jobs it may run in parallel.

IV. EXAMPLE

In a large, online library, the hamake utility can be used to
automate searches for duplicates within a corpus of millions
of digital text documents. Documents with slight differences
due to OCR errors, typos, differences in formatting, or added
material such as a foreword or publishers note can be found
and reported.

To illustrate hamake usage, consider the simple approach of
using the Canopy clustering algorithm[]|] and a vector space
model[8] based on word frequencies. The implementation
could be split into a series of steps, each implemented as
MapReduce job:

ExtractText Extract a plain text from native document
format (e.g. PDF).

Split plain text into tokens which roughly
correspond to words. Deal with hyphens,
compound words, accents, and diacrit-
ics, as well as case-folding, stemming,
or lemmatization, resulting in a list of
normalized tokens.

Filter out stopwords, like a, the, and are.
Calculate a feature vector of term frequen-
cies for each document.

Run Canopy clustering algorithm to group
similar documents into clusters using co-
sine distance as a fast approximate dis-
tance metric.

Output document names, which are found
in clusters with more than one element.

Tokenize

FilterStopwords
CalculateTF

FindSimilar

OutputResult

Each of the six MapReduce jobs produces an output file
which depends on its input. For each document, these jobs
must be invoked sequentially, as the output of one task is
used as input of the next. Additionally, there is a configuration
file containing a list of stop words, and some task outputs
depend on this file content. These dependencies could be
represented by a DAG, as shown in Figure] with vertices
representing documents and jobs assigned to edges. The XML
file describing this dataflow in hamake language is shown as
Listing [T}

Listing 1. hamakefile, describing process for detecting duplicate documents
1<?xml version="1.0" encoding="UTF—8"7>
§<pr0jecl name="FindSimilarBooks™>

4 <property name="1ib" value="/1ib/” />
5

6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
2
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85

<fileset id="input™ path="/doc” mask="x.pdf” />
<file id="output™ path="/result.txt” />

<foreach name="ExtractText™>
<input>
<include idref="input” />
</input>
<output>
<file id="plainText” path="/txt/${ foreach:filename}” />
</output>
<mapreduce jar="${1ib }/hadoopJobs.job” main="com.example. TextExtractor™
<parameter>
<literal value="${foreach:path}” />
</parameter>
<parameter>
<reference idref="plainText” />
</parameter>
</mapreduce>
</foreach>

<foreach name="Tokenize™>
<input>
<file id="plainText” path="/txt” />
</input>
<output>
<file id="tokens” path="/tokens/${ foreach:filename}” />
</output>
<mapreduce jar="${lib }/hadoopJobs.job™” main="com.example. Tokenizer™

</mapreduce>
</foreach>

<foreach name="FilterStopWords™>
<input>
<file id="stopWords” path="/stopwords.txt” />
<file id="tokens” path="/tokens” />
</input>
<output>
<file id="terms” path="/terms/${ foreach:filename}” />
</output>
<mapreduce jar="${lib }/hadoopJobs.job” main="com.example.Tokenizer”>

</mapreduce>
</foreach>

<foreach name="CalculateTF"”>
<input>
<file id="terms” path="/terms” />
</input>
<output>
<file id="TFVector” path="/TF” />
</output>
<mapreduce jar="${dist }/hadoopJobs.job” main="com.example.CalculateTF™>

</mapreduce>
</foreach>

<fold name="FindSimilar™>
<input>
<file id="TFVector” path="/TF” />
</input>
<output>
<include idref="clustersList” path="/clusters”/>
</output>
<mapreduce jar="${1ib }/hadoopJobs.job” main="com.example.Canopy™>

</mapreduce>
</fold>

<fold name="OutputResult™
<input>
<file id="clustersList” path="/clusters” />
</input>
<output>
<include idref="output” />
</output>
<mapreduce jar="${1ib }/hadoopJobs.job” main="com.example.OutputSimilarBooks™>

</mapreduce>
</fold>

86</project>

The first DTR (lines 10-25) converts a document from a
native format such as PDF to plain text. The input of the
DTR is a reference to the /doc folder, and the output is the /fxt
folder. The foreach DTR establishes one-to-one dependencies
between files with identical names in these two folders. The
Hadoop job which performs the actual text extraction is
defined using the mapreduce element. It will be invoked by
hamake for each unsatisfied dependency. The job takes two
parameters, defined with parameter elements - a path to an
original document as the input and a path to a file where the
plain text version will be written. The remaining five DTRs
are defined in a similar manner.

Hamake, when launched with this XML dataflow definition,
will execute a graph reduction algorithm, as shown in Figure[]

and will find the first DTR to process. In our example, this is
ExtractPlainText. First, Hamake will launch the corresponding
Hadoop job and immediately following, execute DTRs which
depend on the output of this DTR, and so on until all output
files are up to date. As a result of this data flow, a file named
results.txt with a list of similar documents will be generated.

This data flow could be used for incremental processing.

When new documents are added, hamake will refrain from
running the following DTRs: ExtractText, Tokenize, FilterStop-
Words, and CalculateTF for previously processed documents.
However, it will run those DTRs for newly added documents
and then, re-run FindSimilar and OutputResults.

If the list of stop words has been changed, hamake will
re-run only FilterStopWords, CalculateTF, FindSimilar, and
OutputResults.

ExtractText

Tokenize
AN

/tokens

\4

stop
words

Y

-

ilterStopWords

/terms

Y_ CalculateTF
AN

It

n

v indSimilar

AN

[clusters

y OutputResults
AN

results

Fig. 4. Directed acyclic graph of a data flow for duplicate document detection

V. RELATED WORK

Several workflow engines exist for Hadoop, such as Oozie,
Azkaban, and Cascading. Although all of these products could
be used to solve similar problems, they differ significantly in
design, philosophy, target user profile, and usage scenarios
limiting the usefulness of a simple, feature-wise comparison.

The most significant difference between these engines and
hamake lies in the workflow vs. dataflow approach. All
of them use the former, explicitly specifying dependencies

between jobs. Hamake, in contrast, uses dependencies be-
tween datasets to derive workflow. Both approaches have their
advantages, but for some problems, the dataflow representation
as used by hamake is more natural.

VI. FUTURE DIRECTIONS

One possible hamake improvement may be better inte-
gration with Hadoop schedulers. For example, if Capacity
Scheduler or Fair Scheduler is used, it would be useful for
hamake to take information about scheduler pools or queues
capacity into account in its job scheduling algorithm.

More granular control over parallelism could be achieved
if the hamake internal dependency graph for foreach DTR
contained individual files rather than just filesets. For example,
consider a dataflow consisting of three filesets A, B, C, and
two foreach DTR’s: D;, mapping A to B, and D>, mapping
B to C. File-level dependencies would allow some jobs to run
from Dy without waiting for all jobs in D; to complete.

Another potential area of future extension is the hamake
dependency mechanism. The current implementation uses a
fairly simple timestamp comparison to check whether depen-
dency is satisfied. This could be generalized, allowing the user
to specify custom dependency check predicates, implemented
either as plugins, scripts (in some embedded scripting lan-
guages), or external programs. This would allow for decisions
based not only on file meta data, such as the timestamp, but
also on its contents.

Several hamake users have requested support for iterative
computations with a termination condition. Possible use-cases
include fixed-point computations and clustering or iterative
regression algorithms. Presently, to embed this kind of algo-
rithm into the hamake dataflow, it requires the use of the
generations feature combined with external automation, which
invokes hamake repeatedly until a certain exit condition is
satisfied. Hamake users could certainly benefit from native
support for this kind of dataflow.

REFERENCES

[1] A. Bialecki, M. Cafarella, D. Cutting, and O. O’Malley. Hadoop: a
framework for running applications on large clusters built of commodity
hardware. 2005.

[2] J. Dean and S. Ghemawat. Map Reduce: Simplified data processing on
large clusters. Communications of the ACM-Association for Computing
Machinery-CACM, 51(1):107-114, 2008.

[3] Kevin Weil. Hadoop at
http://engineering.twitter.com/2010/04/hadoop-at-twitter.html.

[4] Mukesh Gangadhar. Benchmarking and optimizing hadoop.

http://www.slideshare.net/ydn/hadoop-summit-2010-benchmarking-

and-optimizing-hadoop.

AB Kahn. Topological sorting of large networks. Communications of the

ACM, 5(11):558-562, 1962.

Vladimir Orlov and Alexander Bondar. Hamake syntax reference.

http://code.google.com/p/hamake/wiki/ HamakeFileSyntaxReference.

Andrew McCallum, Kamal Nigam, and Lyle H. Ungar. Efficient Clus-

tering of High-Dimensional Data Sets with Application to Reference

Matching. KDD ’00, 2000.

[8] C.D. Manning, P. Raghavan, and H. Schiitze. Introduction to information
retrieval. Cambridge University Press, 2008.

twitter.

[5

—

[6

—_

[7

[

http://github.com/tucu00/oozie1
http://sna-projects.com/azkaban/
http://www.cascading.org/

	Motivation and Background
	Processing Model
	Parallel Execution
	Example
	Related Work
	Future Directions
	References

