
Reification of shallow-embedded DSLs in Coq with
automated verification∗

Vadim Zaliva
Carnegie Mellon University

vzaliva@cmu.edu

Matthieu Sozeau
Inria & IRIF, University Paris 7

matthieu.sozeau@inria.fr

Abstract
Shallow and deep embeddings of DSLs have their pros and
cons. For example, shallow embedding is excellent for quick
prototyping, as it allows quick extension or modification of
the embedded language. Meanwhile, deep embeddings are
better suited for code transformation and compilation. Thus,
it might be useful to be able to switch from shallow to deep
embedding while making sure the semantics of the embed-
ded language is preserved. We will demonstrate a working
approach for implementing and proving such conversion
using TemplateCoq.

1 Introduction
In the course of our work on the HELIX system [3], we faced
the problem of writing a certified compiler for a domain spe-
cific language called Σ-HCOL, which is shallow-embedded
in the Gallina language of the Coq proof assistant [2]. The
approach presented in this report is the result of a summer
of 2018 collaborative visit to Inria, where the use of Tem-
plateCoq [1] was first suggested by Matthieu Sozeau and
successfully implemented and used in the HELIX project.
An application of this technique to reify Σ-HCOL can be

found in the HELIX source code. For illustrative purposes
in this paper, we use a simpler language of arithmetic ex-
pressions on natural numbers. It is shallow-embedded in
Gallina and includes constants, bound variables, and three
arithmetic operators: +, −, and ∗, the complete source for
which can be found in the git repository https://github.com/
vzaliva/CoqPL19-paper.

1.1 Example
Provided that a,b, c,x ∈ N, the expression below is an exam-
ple of a valid expression in the source language:

2 + a∗x∗x + b∗x + c .

Listing 1. Expression in source language

The target language includes the same operators but will
be defined by an inductive type of its AST:
Inductive NExpr : Type :=
| NVar : N→ NExpr (* using de Bruijn indices *)

| NConst : N→ NExpr

| NPlus : NExpr → NExpr → NExpr

| NMinus : NExpr → NExpr → NExpr

∗CoqPL’19 talk extended abstract

| NMult : NExpr → NExpr → NExpr.

Listing 2. Target language type

The expression from Listing 1, translated to the target
language, looks like:
NPlus (NPlus (NPlus (NConst 2)

(NMult (NMult (NVar 3) (NVar 0)) (NVar 0)))
(NMult (NVar 2) (NVar 0))) (NVar 1)

Listing 3. Expression in target language

The purpose of the reification step is just to switch from
shallow to deep embedding. Thus, the target language syntax
is supposed to be close to the source language syntax. We
just change the representation and enforce the scope of the
shallow embedding to ensure that only the allowed subset of
Gallina is used. This makes the translation implementation
fairly straightforward. Additionally, this allows automatic
proof of semantic preservation as shown below.

2 Translation
The translation process performs reification of a given ex-
pression, producing a translated expression in the target
language. It is implemented as a template program named
reifyNExp.
The input expressions are presented in a closed form,

where all variables first need to be introduced via lambda
bindings. Thus, the input expression could be either just N
in the simplest case or an n-ary function of natural numbers,
for example N→ N→ N. The reification template program
is hence polymorphic on the input type expression.
In addition to the input expression, reifyNExp takes two

names (as strings). The first is used as the name of a new
definition, to which the expression in the target language
will be bound. The second is the name to which the semantic
preservation lemma will be bound, as discussed in the next
section.
Polymorphic Definition reifyNExp@ {t u }

{A :Type@ {t }} (res_name lemma_name : string ) (nexpr :A )
: TemplateMonad@ {t u } unit .

Listing 4. Reification program

When executed, if successful, reifyNExp will create a new
definition and new lemma with the given names. If not, it
will fail with an error. The reason for a failure might be that
the expression contains constructs which are legal in Gallina
but not part of our embedded language. The translation is

1

https://github.com/vzaliva/CoqPL19-paper
https://github.com/vzaliva/CoqPL19-paper


implemented in a straightforwardway, traversing the Gallina
AST of the original expression that Template-Coq quoting
produces.

3 Semantic Preservation
The semantics of our source language is defined by Gallina.
On the other hand, the inductive type representing the target
language needs to be given its own semantics. We do this by
providing an evaluation function for the deeply embededd
terms. It takes an evaluation context which holds the current
values of free variables, the expression being evaluated, and
returns the result as a natural number or None in case of
error.
Definition evalContext :Type := list N.
Fixpoint evalNexp (Γ:evalContext) (e :NExpr ): option N.

The evaluation may fail, for example, if the expression
references a variable not present in the evaluation context.
As variables are represented by their indices in Γ, this will
happen if an index is greater or equal to the length of Γ.

The semantic preservation is expressed as a heterogeneous
relation between expressions in the source and target lan-
guages:
Definition NExpr_term_equiv (Γ: evalContext)

(d : NExpr ) (s : N) : Prop := evalNexp Γ d = Some s .

Consequently, the lemma generated by reifyNExp for our
example in Listing 1 will state semantic equivalence between
its expression and that of Listing 3:
∀ x c b a : N, NExpr_term_equiv [x ; c ; b ; a]

NPlus (NPlus (NPlus (NConst 2)
(NMult (NMult (NVar 3) (NVar 0)) (NVar 0)))
(NMult (NVar 2) (NVar 0))) (NVar 1)

(2 + a ∗ x ∗ x + b ∗ x + c )

The generated lemma still needs to be proven. Because
the expressions in the original and target languages have the
same structure, such proof can be automated. The general
idea is to define and prove semantic equivalence lemmas for
each pair of operators and then add them as hints into a hint
database used with the eauto tactic:
Lemma NExpr_add_equiv (Γ: evalContext) {a b a ' b ' }:
NExpr_term_equiv Γ a a ' → NExpr_term_equiv Γ b b' →
NExpr_term_equiv Γ (NPlus a b ) (Nat .add a ' b ').

Lemma NExpr_mul_equiv (Γ: evalContext) {a b a ' b ' }:
NExpr_term_equiv Γ a a ' → NExpr_term_equiv Γ b b' →
NExpr_term_equiv Γ (NMult a b ) (Nat .mul a ' b ').

Lemma NExpr_const_equiv (Γ: evalContext) {v v ' }:
evalNexp Γ (NConst v ) = Some v ' →

NExpr_term_equiv Γ (NConst v ) v '.

Lemma NExpr_var_equiv (Γ: evalContext) {v x }:
evalNexp Γ (NVar v ) = Some x →

NExpr_term_equiv Γ (NVar v ) x .

Create HintDb NExprHints .
Hint Resolve NExpr_add_equiv NExpr_mul_equiv : NExprHints .
Hint Resolve NExpr_const_equiv NExpr_var_equiv : NExprHints .

Obligation Tactic := intros ; simpl ; eauto 99 with NExprHints .
Run TemplateProgram (reifyNExp "Ex1_def" "Ex1_lemma" Ex1 ).

The ASTs of the original and translated expressions and
the semantic equivalence relations between them are shown
in Figure 1.

Nplus

Nplus NVar 1

Nmult

Nmult NVar 0

NVar 0

NVar 0NVar 2

NVar 3

NmultNconst 2

Nplus

+

+

+

+
*

*

*

a

x

c

b

2

x

x

NExpr_add_equiv

NExpr_mul_equiv

NExpr_const_equiv

NExpr_var_equiv

Figure 1. Semantics equivalence

4 Summary
Our approach could be summarized as follows. In order to
translate a language shallowly embedded in Gallina into a
deep embedding, complete the following steps:

1. Define an inductive type for the target language AST.
2. Implement an evaluation function for the target lan-

guage.
3. Define a semantic equivalence relation between ex-

pressions in source and target languages.
4. Implement reification as a template program which

generates an expression in the target language and a
semantic preservation lemma.

5. Define and prove lemmas of semantic equivalence be-
tween operators of source and target languages and
add them to the hints database.

6. Use eauto to prove automatically generated semantic
preservation lemma.

We successfully applied this translation validation ap-
proach to the non-trivial Σ-HCOL language in HELIX, fea-
turing binders, dependent types, and higher-order operators
like map on fixed-sized vectors. We found it easy to imple-
ment compared to other means of reification like type classes
or Ltac programming and recommend using it as a guide
for switching from shallow to deep embedding of DSLs. In
the presentation, we propose to present this case study in
detail.

2



References
[1] Abhishek Anand, Simon Boulier, Cyril Cohen, Matthieu Sozeau, and

Nicolas Tabareau. 2018. Towards Certified Meta-Programming with
Typed Template-Coq. In ITP 2018-9th Conference on Interactive Theorem
Proving.

[2] The Coq Development Team. 2018. The Coq Proof Assistant, version
8.8.0. (Apr 2018). https://doi.org/10.5281/zenodo.1219885

[3] Vadim Zaliva and Franz Franchetti. 2018. HELIX: A Case Study of a
Formal Verification of High Performance Program Generation. In Pro-
ceedings of the 7th ACM SIGPLAN International Workshop on Functional
High-Performance Computing (FHPC 2018). ACM, New York, NY, USA,
1–9. https://doi.org/10.1145/3264738.3264739

3

https://doi.org/10.5281/zenodo.1219885
https://doi.org/10.1145/3264738.3264739

	Abstract
	1 Introduction
	1.1 Example

	2 Translation
	3 Semantic Preservation
	4 Summary
	References

