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Abstract
In this paper, we present HELIX, a formally verified opera-
tor language and rewriting engine for generation of high-
performance implementation for a variety of linear algebra
algorithms. Based on the existing SPIRAL system, HELIX
adds the rigor of formal verification of its correctness using
Coq proof assistant. It formally defines two domain-specific
languages: HCOL, which represents a computation data flow
and Σ-HCOL, which extends HCOL with iterative compu-
tations. A framework for automatically proving semantic
preservation of expression rewriting for both languages is pre-
sented. The structural properties of the dataflow graph which
allow efficient compilation are formalized, and a monadic
approach to tracking them and to reasoning about structural
correctness of Σ-HCOL expressions is presented.

CCS Concepts • Theory of computation → Algebraic
language theory;Rewrite systems;Programsemantics;
Logic and verification;

Keywords rule rewriting, operator language, Coq, formal
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1 Introduction
With the current level of sophistication of hardware ar-
chitectures, the problem of manually implementing high-
performance numerical algorithms becomes challenging even
when using optimizing compilers and is often solved by spe-
cialized code generation systems, such as SPIRAL [Püschel
et al. 2005]. SPIRAL can generate high-performance imple-
mentation for a variety of linear algebra algorithms, such as
discrete Fourier transform, discrete cosine transform, con-
volutions, and the discrete wavelet transform, optimizing
for features of target architecture, such as multiple cores,
single-instruction multiple-data (SIMD) vector instruction
sets, and deep memory hierarchies.
While SPIRAL is used to generate high-performance li-

braries for mission critical software, users need assurances
about the correctness of the generated code. The goal of
HELIX, as a part of the High Assurance SPIRAL project
[Franchetti et al. 2017; Low and Franchetti 2017], is formal
proof of the correctness of SPIRAL optimizations and code
generation using Coq proof assistant.

SPIRALworks by transforming an original program though
a series of intermediate languages, culminating in machine
code, as shown in Figure 1. The original SPIRAL input lan-
guage is called OL [Franchetti et al. 2009], and it closely
resembles mathematical formulae. As a first step, it “breaks
down” an OL expression into one or more OL operators,
which, glued together by a function composition, represent
a data-flow graph of the computation [Franchetti et al. 2005].
The resulting expression is then translated into another lan-
guage, called Σ-OL, which adds the implicit representation of
iterative computations. Next, using a series of rewrite rules
driven by the extensive knowledge base of SPIRAL’s opti-
mization algorithms, the Σ-OL expression gets rewritten into
a shape which lends itself to the efficient code for the target
platform. Subsequently, an Σ-OL expression is compiled into
an intermediate imperative language, called i-Code. By doing
this, SPIRAL converts the dataflow graph into a sequence
of loops and arithmetic operations. Finally, the i-Code, after
some additional transformations, yields a C program, which
is compiled with an optimizing compiler, producing an exe-
cutable high-performance machine code implementation of
the original OL expression.

https://doi.org/10.1145/3264738.3264739
https://doi.org/10.1145/3264738.3264739
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Figure 1. HELIX transformation stages

This paper describes HELIX, a system formalizing SPI-
RAL’s OL and Σ-OL languages and providing correctness
proofs of OL breakdown rules and Σ-OL rewriting rules. In
the original SPIRAL system, both languages are loosely de-
fined. For our work, we rigorously define two dialects of
these languages, HCOL and Σ-HCOL.
We first resolve the question of the exact properties of

the system we are formally proving. SPIRAL, being a DSL
compiler, is expected to satisfy the semantic preservation
property [Leroy 2009]. To perform platform specific opti-
mizations, the h-Code generation step expects a Σ-HCOL
expression in a certain shape adding the requirement of prov-
ing the structural correctness properties, which insure that
shape. Proving correctness of such a system requires a novel
approach, combining algebraic equational reasoning with
compiler correctness proofs and proofs about computation
dataflow structure.

2 Motivating Example
We first give an informal introduction of the HCOL language
using a simple example to illustrate the main HCOL concepts
to be more formally defined and elaborated in later sections.
Sample implementation in Haskell is provided for illustration
purposes in Appendix A.

As an example, we consider the Chebyshev distance, which
is a metric defined on a vector space, induced by the infinity
norm:

d∞ : Rn × Rn → R with

d∞(®a, ®b) = | | ®a − ®b | |∞ (1)

The infinity norm is a vector norm of a vector defined as:

| | · | |∞ : Rn → R with
| | ®x | |∞ = max

i
| ®xi | (2)

2.1 Chebyshev Distance in HCOL
HCOL operators are unary functions on real-valued finite-
dimensional vectors. The scalar values are represented as
single element vectors (R � R1), and tuples of vectors are
flattened (Rm × Rn � Rm+n). Thus, the Chebyshev distance
and the infinity norm HCOL operators have the following
types:

ChebyshevDist : R2n → R1

InfinityNorm : Rn → R1

Three more HCOL operators correspond to common func-
tional programming primitives: fold, map, and
zipWith (see Appendix A for full definitions):

Reducef ,z : Rn → R1 (3)
Mapf : Rn → Rn (4)

Binopf : R2n → Rn (5)

HCOL operators can be combined using functional compo-
sition, for which we will use infix notation: A ◦ B. Now, we
can write an HCOL expression for the Chebyshev distance as
a composition of an InfinityNorm operator and an element-
wise vector subtraction, expressed as Binop parameterized
by a binary subtraction function (sub : R→ R→ R):

ChebyshevDist = InfinityNorm ◦ Binopsub (6)

In turn, an infinity norm can be broken down further into
simpler operators resulting in the final HCOL expression for
Chebyshev distance:

ChebyshevDist = Reducemax,0 ◦ Mapabs ◦ Binopsub (7)

With this last step, we’ve transitioned from a high-level
mathematical formula to anHCOL expressionwhich operates
on linear memory (vectors) and structurally represents the
dataflow with granularity up to vectors.

2.2 Chebyshev Distance in Σ-HCOL
Most vector and matrix operations can be expressed as itera-
tive computations on their elements. To generate efficient
machine code for such computations, we transform our ex-
pressions into a form where these iterations will become
explicit. For that, we extend the HCOL language in the fol-
lowing ways:

2.2.1 Sparsity
An iterative computation on vectors can be viewed as super-
position of computations performed during each step which
processes only a subset of elements. The vector positions
not used during an iteration step can be left empty. This can
be presented naturally with sparse vectors. For example, a
dense vector can be represented as the sum of columns of a
diagonal sparse matrix, as shown in Figure 2. In this example,
for simplicity, we use Rn type to represent sparse real-valued
vectors of length n and assume that sparse cells hold a spe-
cial structural zero value, which is treated as regular 0 under
addition. In later sections, we give a more formal treatment
of how we represent and reason about sparsity in HELIX.
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Figure 2. Dense vector as a sum of sparse vectors
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It should be noted that these sparse representations are
used only for verification of rewriting steps and do not affect
generated code. All sparsity information will be “erased”
along with proofs during compilation steps.

2.2.2 Data Partitioning and Re-assembly Operators
To switch between the dense and sparse representations of
the data, we introduce additional operators which allow us
to extract a subset of cells from a dense vector and embed
them into a sparse one.

2.2.3 Higher-order Operators
To represent iterative computations over other operators, we
need higher-order operators.

The HCOL language extended as described above is called
Σ-HCOL and in the rest of this section, we present some of
its operators.

Lifting Scalar Functions Weuse notation J·K for theHCOL
atomic operator, which lifts real-valued scalar functions to
HCOL operators. When lifting functions of multiple argu-
ments, they are uncurried and their arguments are flattened
into a vector. Thus, R→ R is directly lifted to R1 → R1, but
R→ R→ R becomes R2 → R1.

Embedding and Picking The Embed operator takes an el-
ement from a single-element vector and puts it at a specific
index in a sparse vector of given length. The Pick operator
does the opposite: it selects an element from the input vector
at the given index and returns it as a single element vector:

Embedn,i : R1 → Rn (8)

Picki : Rn → R1 (9)

Gathering and Scattering Embedding and picking can be
generalized where more than one element can be embedded
or picked at once. The element selection is controlled by a
user-provided index mapping function.
The Scat operator maps elements of the input vector to

the elements of the output according to an index mapping
function f . The mapping is injective but not necessarily sur-
jective. That means the output vector could be sparse.
The Gath operator works in a similar manner except the

index mapping function f is used in the opposite direction:
to map the output indices to the input ones.

Scatf : Rn → Rm (10)
Gathf : Rn → Rm (11)

The Gath and Scat dataflows are shown in Figure 3.

2.2.4 Sparse Embedding
One class of HCOL expressions that we are particularly in-
terested in has the following form:

Scatf ◦ K ◦ Gathд (12)
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Figure 3. Gath and Scat dataflows

This form is called a sparse embedding of an operator K
(the kernel) and represents a step in iterative processing of
a vector’s elements. It corresponds to the body of a loop in
which the gather picks the input vector’s elements, which
are then processed by K , and the results are then dispatched
to appropriate positions in the output vector using the scatter.
The function f must be injective.

2.2.5 Map-Reduce
The higher-order map-reduce operator MRk,f ,z takes an in-
dexed family of operators (a function which for each given
index value returns an operator, typically a sparse embedding)
and produces a new operator. It has the following type:

MRk,f ,z : (N→ (Rn → Rm)) → Rn → Rm (13)

When evaluated, amap-reduce applies all family members
with indices between 0 andk−1 (inclusive) to an input vector,
and the resulting k vectors are folded element-wise using
a binary function (f : R → R → R) and the initial value
(z : R).

A simple example applies a function f to all elements of a
vector of size 2:

MR2,+,0(λi .(Scatλx .i ◦ Jf K ◦ Gathλx .i )) (14)

We use a family of sparse embeddings of Jf K as a body of
the map-reduce. The dataflow of expression (14) is shown in
Figure 4.
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2.3 Chebyshev Distance Σ-HCOL Breakdown
We now demonstrate how HCOL expression (7) for Cheby-
shev Distance can be transformed via a series of rewriting
steps into a Σ-HCOL form which exposes implicit iterations
and is more suitable for compilation. During each step, one
SPIRAL rewriting rule is applied, which replaces a part of the
expression with another semantically equivalent expression.

Reducemax,0 ◦ Mapabs ◦ Binopsub (15)
= Reducemax,0◦Mapabs◦

MRn,+,0(λi .(Scatλx .i ◦ JsubK ◦ Gathλx .xn+i )) (16)
= Reducemax,0 ◦ MRn,+,0(λi .

(Scatλx .i ◦ JabsK ◦ JsubK ◦ Gathλx .xn+i )) (17)
= MRn,max, 0(λi .(Reducemax,0 ◦ Scatλx .i◦

JabsK ◦ JsubK ◦ Gathλx .xn+i )) (18)
= MRn,max,0(λi .(JabsK ◦ JsubK ◦ Gathλx .xn+i )) (19)
= MRn,max,0(λi .(Jλ ab . |a − b |K ◦ Gathλx .xn+i )) (20)
= MRn,max,0(λi .(Jλ ab . |a − b |K◦

MR2,+,0(λj .(Embed2, j ◦ Picki+jn)))) (21)

We start with expression (15), our final HCOL represen-
tation of Chebyshev distance, as in Equation (7). In (16), we
expand the Binop operator onto an iterative map-reduce
on sparse embedding of function sub. In (17), we combine
Map and MR by moving Map’s operation inside MR’s sparse em-
bedding kernel. Next, in (18), we move Reduce inside of the
map-reduce iterator. In (19), we drop it altogether based on
the fact that Scatλx .i will always produce a sparse vector
with a single non-empty element. In (20), we merge two
atomic operators into one. Finally, in (21), we expand Gath
operating on a 2-element vector into a 2-step iterator pro-
cessing each vector’s element independently.

See Appendix A for the Haskell version of the complete ex-
ample described in this section. The resulting expression (21)
presents Chebyshev distance in terms of two nested iterative
computations and some simple arithmetic operations. Each
iterative map-reduce naturally translates to a loop, which
allows compilation of this expression into an imperative
program and subsequently into efficient machine code. For
example, SPIRAL compiles expression (15) for n = 3 with
optimizations turned off into the C code shown in Listing 1:

void chebyshev ( f l o a t ∗ y , f l o a t ∗ x ) {
f l o a t s , t [ 2 ] ;
y [ 0 ] = 0 . 0 f ;
for ( in t i = 0 ; i <= 2 ; i ++) { / ∗ MRn,max,0 ∗ /

for ( in t j = 0 ; j <= 1 ; j ++) / ∗ MR2,+,0 ∗ /
t [ j ] = x [ i + 3 ∗ j ] ;

s = abs ( t [ 0 ] − t [ 1 ] ) ; / ∗ Jλ ab . |a − b |K ∗ /
y [ 0 ] = max ( s , y [ 0 ] ) ;

}

}

Listing 1. SPIRAL-generated C Code for Chebyshev Dis-
tance

The C code above is generated for the most generic archi-
tecture and thus is not vectorized nor parallelized. However,
from Σ-HCOL expressions, like (21), with implicit loops and
the dataflow, SPIRAL can generate a very efficient machine
code for various hardware architectures, taking advantage
of vectorization and parallelization. See [Püschel et al. 2011]
for details.

3 Defining HCOL
HELIX HCOL language is based on the SPIRAL OL language
which was originally designed to represent linear algebra
expressions on real or complex vectors. The primitive OL
operators are functions from vectors to vectors. Higher-order
operators, such as function composition, allow the building
of more complex HCOL expressions.
Depending on the dimensionality of vectors an OL ex-

pression operates on, it could represent computation with
different levels of granularity. By applying a set of rewrit-
ing rules, an HCOL expression could ultimately be “broken
down” to the simplest form in which atomic operations are
performed on scalar values, represented as single element
vectors. An HCOL expression in such form can be directly
mapped to a dataflow graph of the computation it represents.
HCOL is a shallow-embedded language in Coq proof as-

sistant. All HCOL operators are represented as functions in
[development team 2004] host language Gallina. Unlike OL,
the data type is abstracted instead of using R or C. In the rest
of this section, we discuss the specifics of HCOL embedding
in Coq.

The following are the data types used in HCOL:
The Carrier Type: This is an abstract representation of a nu-

meric type, expressed in terms of its algebraic prop-
erties. Definitions and proofs formulated for it can be
used, for example, on R, Q, or Z, as they satisfy these
properties. We denote the carrier type as R. Algebraic
properties are expressed using corresponding type-
class instances from the MathClasses library [Spitters
and Van der Weegen 2011]. For example, we require
that R, along with corresponding operations, forms an
algebraic ring, has total ordering, and has decideable
equality.

Finite-dimensional Vectors: To represent vectors, we use the
inductively-defined Vector type from Coq’s standard
library. Vector elements have type R.

Finite natural numbers: To represent finite natural numbers,
we use Coq’s sig type. In this paper, we sometimes
use the shorter notation In to denote {x : N | x < n}.

The dimensions of input and output vectors of an HCOL
operator are encoded as indices of the vector type family,
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and vector type Rn corresponds to (vector R n) in Coq.
When constructing a complex HCOL expression, Coq’s type
system ensures that the input/output dimensions match.

4 Reasoning About HCOL
4.1 Semantic Preservation
When SPIRAL transforms HCOL expressions, as we demon-
strated in Section 2, we want to ensure that the semantics are
preserved. Our approach for proving semantic preservation
of HCOL rewriting is described below and is based on Coq’s
setoid rewriting [Sozeau 2010] together with HCOL operator
equational theory.

4.2 Equality
The definition of equality is essential for HCOL operator
rewriting. The Coq default notion of equality (eq) is too
restrictive for our purposes. For example, it doesn’t allow us
to work with rational numbers represented by non-reduced
integer fractions. We would like to work on a carrier type
equipped with an equivalence relation which is also called a
Setoid.
Similarly, we define equality for vectors as a pointwise

relation. From that follows the natural definition of theHCOL
operator’s extensional equality, which basically states that
two operators F and G are equal if for all possible input
vectors x , the values of F x and G x are also equal.

4.3 Rewriting
We define our semantics preservation property as an equiv-
alence relation on HCOL expressions. To prove that HCOL
expression A could be transformed into HCOL expression B
while preserving its semantics, we need to prove A = B.

In the case of simple operators, we can just prove a lemma
stating the equality of the two exact expressions. For complex
expressions consisting of composition of multiple operators,
such proof can be performed in a series of steps which can
be automated. Each step corresponds to an application of a
“rewriting rule” modifying a part of or a whole expression.
For each rule, there is a lemma in the form A = B. It is
applied using setoid_rewrite tactic, which looks in the
current expression for patterns matchingA and replaces their
occurrences with B. Because (=) is transitive, proving each
rewriting step will guarantee the equality between the initial
expression and the results of an application of a sequence
of the rules. The rewrite rules in the HELIX library must be
manually proven once but after that, these proofs can be re-
used to automatically prove the correctness of any sequence
of their applications.

4.4 HCOL Semantics Preservation Verification
Framework

To summarize, the components of our semantics preservation
verification framework for HCOL rewriting were:

• We abstract the data type on which HCOL operates as
carrier type R.

• We assume an equivalence relation (=) on R.
• We assume some algebraic properties of R.
• We define (=) on vectors of R as a pointwise relation.
• We define HCOL operators as functions from vectors
to vectors (of a carrier type) which are instances of
HOperator typeclass.

• We define extensional equality of HCOL operators.
• We define rewriting rules as lemmas stating equality
between HCOL expressions.

Using this framework, given the original and the final
HCOL expressions, h and h′, and the trace (a list) of rewriting
rules applied to get from h to h′, the HELIX HCOL rewriting
proof engine can prove that an applied sequence of rewriting
rules is semantically preserving and that h = h′.
This technique is known as a translation validation. A

sequence of rewriting steps is generated outside of HELIX
by the SPIRAL system. Instead of proving that SPIRAL will
always transform an expression correctly, HELIX formally
verifies the correctness of the produced results. Given that
SPIRAL and HELIX use the same library of rewriting rules,
the proof of a goal h = h′ is a sequence of applications
of setoid rewrites using already proven per-rule lemmas
from the HELIX library. We can automatically generate such
proof from the trace and if Coq accepts it, the rewriting is
proven correct. If, for some reason, the trace contains a non-
semantically preserving rewriting sequence, Coq will not
accept the proof.

5 Defining Σ-HCOL
HELIX Σ-HCOL language is based on the SPIRAL Σ-OL lan-
guage. LikeHCOL, Σ-HCOL is also embedded in Coq but with
a mixed embedding, as discussed below. While OL and HCOL
languages are declarative, Σ-OL and Σ-HCOL are purely func-
tional.
HCOL operators can be used in Σ-HCOL expressions by

wrapping them in a utility operator. Such “lifting” allows
a temporary mixture of abstractions, corresponding to em-
bedding mathematical formulae in a functional program. A
Σ-HCOL expression can be gradually transferred to a purely
functional form by applying a series of rewriting rules.
In iterative factorization of operations on vectors, each

iteration represents a partial computation, and the resulting
vector is sparse. In SPIRAL, the sparsity is implicit and repre-
sented by default values assigned to empty cells. In Σ-HCOL,
we have implicit sparsity tracking and a special sparse vec-
tor type. Thus, while in SPIRAL, Σ-OL is a superset of OL,
in HELIX, Σ-HCOL and HCOL are two distinct languages
operating on different data types: sparse vs. dense vectors.
In the rest of this section, we discuss the specifics of Σ-

HCOL formalization in Coq.
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5.1 Sparse Vectors
As mentioned in Section 1, Σ-HCOL provides an implicit
representation of iterative computations, such as applying
a function to a vector’s elements iteratively. A metaphor
used is decomposition of dense vectors as a sum of sparse
vectors (shown in Figure 2) combined with an MR operator
(introduced in Section 2.2.5). Mathematically, the correctness
of dense vector decomposition requires that the value held
by the empty elements and the operation used to combine
them form a monoid.
Decompositions differing in the number of vectors and

locations of non-sparse values could represent a variety of
memory access patterns. The particular class of decomposi-
tions of interest is the one where each is assigned to only one
of the sparse vectors, as shown in Figure 2. In such a case, the
reduce stage of the MR operator can be optimized out during
code generation, and no actual summation needs to be per-
formed. Thus, each non-sparse value generated represents a
write to the output vector’s element with the corresponding
index. To detect violation of this form, it is sufficient to verify
that, whenever we combine two cells during the reduce stage,
at least one is empty. An attempt to combine two non-empty
values, which we call a collision, signifies that the Σ-HCOL
expression does not satisfy the collision-safe decomposition
form we want.

Mathematically, as long aswe assign a value of themonoid’s
identity element to the empty cells (for example, 0 in MRn,+,0),
the summation decomposition will produce the correct re-
sults, but it will not allow us to distinguish empty cells from
cells which happen to have 0 value and hence, we cannot de-
tect collisions. Thus, we need to track the sparsity of vector
elements separately from the actual values. We assume that
sparse vector empty cells hold a nominal value, which we
call a structural value.

Using this terminology, when combining vector elements
pairwise, one of the values must be structural. If both values
are non-structural, we have a collision, which indicates mem-
ory location being overwritten. Once occurred, the collision
should be tracked down the computation graph, and any
operation with a value produced as a result of a collision
should be marked as colliding.

By this reasoning, we need our sparse vector formalization
to meet the following requirements:

• Distinguish empty from assigned cells to detect colli-
sions

• Customize the structural value of empty cells (e.g. 0
for addition, 1 for multiplication)

• Detect and track collisions
• Separate sparsity tracking from actual operations on
values

We use aWriter Monad to track structural attributes. This
monad provides a write-only state, which is tracked and
updated along with computation. The state is accumulative,

and its initial value mzeromust form a monoid with the state
update operation mappend. Our monad instance has an R as
the value type and a set of flags stored in the RthetaFlags
record as the state. We currently use just two boolean flags:
one to represent whether the value is structural and another
to track collisions which have already occurred.
Our default implementation of mappend combines the

two sets of flags as follows: If at least one operands is non-
structural, the result is also non-structural; combining two
non-structural elements causes a collision; and the collision
flag is sticky and propagates to the result as soon as one of
the arguments has it set.
Writer Monad has an mzero value, which together with

mappend forms a monoid. We define mzero as
RthetaFlagswith is_struct = true and is_collision = f alse .
We proved that the monoid laws are satisfied for mappend
and mzero. Coq standard library do not have Monad type
definitions, so in our development, we rely on the 3rd party
library, ExtLib [Malecha et al. 2012].
Here we face a dilemma. In the reduce stage of MR, com-

bining two non-structural elements is a collision. However,
outside of MR as well as within its map stage, combining
two dense values is a legitimate operation which should not
trigger a collision. Even when collisions are not generated,
we still need to track sparsity and preserve and propagate
already raised collision flags. This can be achieved using
a Writer Monad with the same value type, state type, and
mzero value but equipped with a different mappend imple-
mentation. This operation is similar to default mappend, but
it is collision-safe in that it never raises a new collision flag.

Now, we can define two new types for monadic R values:
Rtheta and RStheta. They both share the same flags and
track sparsity and collisions, but the former detects new
collisions, while the latter does not. Technically these are
implemented by instantiating Writer Monad for the same
state and value types and the same mzero value but with two
different mappend functions.

We can nowuse Rtheta or RStheta depending onwhether
we would like to permit collisions in the given context. We
define conversion functions to switch between these two
types, while preserving both the state and the value. Flag
tracking is entirely separate from the operations on values
since they represent two different aspects of computation.
Our type system guarantees that flags and values are inde-
pendent from each other. This allows separation of structural
proofs from semantic preservation proofs.

5.2 Σ-HCOL Mixed Embedding
For Σ-HCOL, we use a different approach from HCOL, called
mixed embedding, under which each operator is defined as
a Record containing a shallow-embedded executable imple-
mentation in Gallina. Additionally, the record contains some
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other fields which are not required for execution but nec-
essary for proving various properties of Σ-HCOL operators
and expressions.

Two of such fields are in_index_set and out_index_set
representing the operator’s sparsity contract. They define the
expected sparsity patterns of input vectors and guaranteed
sparsity patterns of output vectors, respectively.

5.3 Σ-HCOL Operators
All Σ-HCOL operators are defined on sparse vectors, unlike
HCOL operators which are defined on dense vectors. To work
on sparse vectors and to track collisions, we defined Σ-HCOL
variants of HCOL operators, such as Binop.

The composition of Σ-HCOL operators is defined as fol-
lows. The result of a composition of Σ-HCOL operators f ◦д
will be a new operator whose evaluation function will be a
composition of the f and д’s evaluation functions; the input
dimensionality and in_index_set will be the same as in д;
the output dimensionality and out_index_set will be the
same as in f .
The final group of Σ-HCOL operators consists of higher-

order operators representing iterative computations. An ex-
ample of such an iterative operator is MR (map-reduce), which
we introduced in Section 2.2.5. The MR works on sparse vec-
tors but is parameterized by Monoid RthetaFlags, which al-
lows this operator to be used with different collision-tracking
policies.

6 Reasoning About Σ-HCOL
6.1 Semantic Preservation
The reasoning about semantic preservation during Σ-HCOL
rewriting is similar in approach to our reasoning aboutHCOL
in Section 4. The main difference is that Σ-HCOL operators
work on sparse not dense vectors. However, for semantic
preservation, we only care about equality of actual values
ignoring the structural flags. This is achieved by defining
custom equality relations for Rtheta and RStheta types.
Comparing two monadic values of these types is defined as
comparing their underlying values ignoring the state.

6.2 Structural Properties of Σ-HCOL Operators
We’ve defined the following structural properties which guar-
antee that a Σ-HCOL expression is in a form which is suitable
for optimal and correct code generation:

1. The sparsity contract (in_index_set and
out_index_set membership) is decideable

2. Only the values at indices from the in_index_set of
the input vector affect output

3. A sufficiently filled input vector (values in correct
places) guarantees a properly filled output vector (val-
ues only where expected)

4. Never generate values at sparse positions of the output
vector

5. As long as there are no collisions at non-sparse loca-
tions of the input vector, none are produced at non-
sparse locations in the output vector

6. Never generate collisions in sparse locations of the
output vector

We’ve grouped them in a SHOperator_Facts type class
and have proven its instances for all Σ-HCOL operators that
we have defined. The proof of these properties for higher-
order operators is compositional; as long as all operators in-
volved are instances of SHOperator_Facts, it can be shown
that all Σ-HCOL higher-order operators are also instances of
SHOperator_Facts. That gives us a structural correctness
proof “by construction” of any Σ-HCOL expression.

6.3 Additional Correctness Properties
In addition to semantic preservation and structural correct-
ness, there are some additional properties which we want to
verify for the final Σ-HCOL expression:

Sparsity contract “subtyping” It guarantees that the re-
sulting expression’s in_index_set is included in the origi-
nal expression’s in_index_set, while the
out_index_set of each expression is the same. This permits
potential optimizations during rewriting, when indices of
input vectors which were used by the original expression
are no longer used by the resulting expression. This is also
proven compositionally by constructing respective sparsity
contracts of input and output expressions.

Totality of the computation In general, Σ-HCOL opera-
tors work on sparse vectors. However, the sparsity is used
only internally to represent partial computation. The whole
composite computation should be total and take the dense
input and produce the dense output. That means that for
top-level Σ-HCOL expressions, we want to prove that both
in_index_set and out_index_set are the full sets. This
is proven compositionally as well, constructing respective
sparsity contracts of input and output expressions.

7 Discussion
7.1 Status
Our goal is to formally verify the full pipeline shown in
Figure 1 from mathematical expression to machine code.
So far, we have formalized and proven HCOL and Σ-HCOL
rewriting steps and translation between the two. The current
development consists of about 5K lines of specification and
10K lines of proofs in Coq. Following the framework which
we’ve developed, additional operators and rewriting rules
could easily be added. We have not yet implemented the
proof automation part, which would read the actual SPIRAL
trace file and translate it to a sequence of tactic applications,
but this step should be easy to implement, as there is 1-to-1
correspondence between rule applications in trace and tactic
applications in automated proof. Automation of structural
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proofs could also be easily implemented in the future using
LTAC proof automation for reasoning about finite sets.

7.2 Future Work
In future, we will prove the translation of Σ-HCOL to ma-
chine code via an intermediate language (h-Code). To do
so we will use TemplateCoq [Anand et al. 2018] to reflect
shallow embedded Σ-HCOL expressions to an intermediate
deep-embedded form of Σ-HCOL language which then will
be compiled to h-Code. We plan to develop a certified com-
piler from h-Code to LLVM IR. The sequence of translations
is shown in Figure 1.We plan to prove correctness of Σ-HCOL
to h-Code compilation and h-Code to LLVM IR. Proving cor-
rectness of IR to machine code compilation and low-level
optimizations performed by the LLVM IR compiler are be-
yond the scope of this project and are being addressed by
other parties, for example by the VELLVM project [Zhao
et al. 2012, 2013] with whom we collaborate.

7.3 Related Work
This work falls under the category of verified compilation.
The overall approach is discussed in [Leroy 2009], as im-
plemented in CompCert compiler. A CertiCoq [Anand et al.
2017] approach is closer to ours as our language is shallow-
embedded inGallina. Another source of inspiration is CakeML
[Kumar et al. 2014].

A Chebyshev Distance Σ-HCOL expression
in Haskell

{−− Placeholder for structural zero −−}
szero :: Float
szero = 0.0

{− Equation (3) −}
hReduce :: (a −> a −> a) −> a −> [a] −> [a]
hReduce f z = return . foldr f z

{− Equation (4) −}
hMap :: (a −> a) −> [a] −> [a]
hMap f = map f

{− Equation (5) −}
hBinop :: Int −> (a −> a −> a) −> [a] −> [a]
hBinop n f x = zipWith f a b

where (a,b) = splitAt n x

{− Equation (8) −}
hEmbed :: Int −> Int −> [Float] −> [Float]
hEmbed n i (x:nil) = replicate i szero ++ [x] ++

(replicate (n−i−1) szero)

{− Equation (9) −}
hPick :: Int −> [a] −> [a]
hPick i x = [x !! i]

{− Converts a binary function to HCOL operator−}
hAtomic :: (a −> a −> a) −> [a] −> [a]
hAtomic f (a:b:nil) = [f a b]

{− Equation (10) −}
hScat :: Int −> (Int −> Int) −> [Float] −> [Float]

hScat m f x =
let f' y d = if d == length x then Nothing

else if f d == y then Just d
else f' y (d+1)

in map (\i −> case f' i 0 of
Nothing −> szero
Just j −> x!!j

) [0..m−1]

{− Equation (11) −}
hGath :: Int −> (Int −> Int) −> [a] −> [a]
hGath m f x = map (\i −> x!!(f i)) [0..m−1]

{− Equation (13) −}
hMR :: Int −> (a −> a −> a) −> a −>

(Int −> ([a] −> [a])) −> [a] −> [a]
hMR k f z fam x = foldr (zipWith f) (repeat z)

(map (\i −> fam i x) [0..k−1])

{−− Equation (21) −−}
chebyshev n = hMR n max 0.0 (\i −>

hAtomic (\a b −> abs (a −b))
.
hMR 2 (+) 0.0

(\ j −> (hEmbed 2 j) . (hPick (i+j∗n))))
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